液态锂铅合金中氢同位素测量研究进展

来源 :材料导报 | 被引量 : 0次 | 上传用户:gsbyqjkwkw
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
液态锂铅合金可兼作中子倍增剂、氚增殖剂以及冷却剂,因此液态锂铅合金包层被认为是一种在示范堆(DEMO)或聚变电站中颇有应用前景的增殖包层设计.为了连续监测锂铅增殖包层模块中氚的输运情况,准确、快速测量液态增殖剂的产氚率,需要实时在线测量流动液态增殖剂中氢同位素的浓度.现有传感器都是通过一定手段测定液态金属中的氢分压,然后代入Sieverts定律计算氢同位素浓度,其中氢同位素溶解度系数与同位素浓度的准确测量息息相关.目前氢溶解度系数测量方法主要分为定容法和渗透法,各团队对锂铅合金中氢同位素溶解度系数的测定数值差异较大.一方面由于氢同位素在液态锂铅合金中的溶解度极低,实验误差的影响不可忽视;另一方面杂质效应也会导致溶解度系数的差异,来自空气、水、CO中的氧会引入到锂铅中形成Li2 O,而与氧的反应会消耗液态锂铅合金中的Li,使Li活性降低,进而降低氢同位素的溶解度,因此氧含量以及其他杂质的控制对于锂铅合金的实际应用至关重要.近几年已开发的液态锂铅中氢同位素在线测量传感器主要包括金属渗透窗传感器和固体电解质传感器.金属渗透窗传感器结构简单,可靠性高,研究者们主要从材料选择和器件结构优化等方面不断尝试,并取得了丰硕的成果.目前的研究证实了动态测量模式在液态锂铅中氢同位素浓度快速在线测量方面的可行性,需解决的问题是如何避免金属探头材料的氧化,保证长期工作的稳定性.固体电解质测氢传感技术相对成熟,但陶瓷材料韧性较差,测试时需要通入参考气体,并且在器件结构设计和材料选择方面要求更高.还有一些液态金属在线测氢技术,探头采用多孔陶瓷来收集气体,主要用于铝液中氢浓度的测量.对于液态锂铅合金测氢,仍需探索材料的发气性与锂铅材料的相容性,以及对锂铅中极低氢同位素浓度测量的可行性.本文首先论述了影响氢同位素在液态锂铅合金中溶解度的因素,然后综述了液态锂铅合金中氢同位素溶解度系数的研究进展,包括其原理和研究方法,讨论了不同方法测量数值的差异.此外,本文对在线测量液态锂铅合金中氢同位素浓度传感器的研究进行了概述.最后,对在线测量液态锂铅合金中氢同位素浓度传感器的器件优化和未来发展方向作出了评价.
其他文献
镁合金作为目前最轻的商用金属结构材料,在航空航天、汽车、3C产品等领域具有广泛的应用前景.同时,面对全球铁铝资源日趋紧缺和我国大量进口铁铝矿石的困境,推广应用镁合金材料具有重要的战略意义.与常用的钢铁材料和铝合金相比,镁合金的研究与开发还不充分,应用也受限.镁合金的耐腐蚀性能差,部分原因是镁的化学活性高,且表面生成的保护膜不具备保护作用.尤其在高温下,镁及其合金极易氧化,甚至燃烧,释放大量的热,这成为限制镁合金大量推广应用的瓶颈之一.针对镁及其合金极易氧化的问题,近年来研究学者围绕其氧化机制和影响因素开展
铜及其合金具有优良的耐腐蚀、导电导热性能及机械加工性能,广泛应用于电气、轻工、机械制造等领域.随着生产条件的不断优化,为同时满足不同的应用需求,人们期望获得综合性能更加优良或某一性能特别突出的零部件,但传统制造加工方法工艺复杂,且生产过程中材料利用率较低,存在很大的局限性.为实现零件表面合金化,改善零件表面性能缺陷,表面涂层技术被开发并广泛应用;为实现复杂结构零件的成形,人们开发了增材制造技术.铜合金增材制造技术通过逐层累积的方法,可以高效快速地制造出各类精密零部件,不仅使合金材料利用率高,还能够满足各种
为实现对工业废弃物粉煤灰的剩余价值利用,尝试以粉煤灰作为主要原料制备焊接复合活性剂,并在AZ91镁合金板上进行A-TIG焊。利用焊缝的电特性实时采集、焊接温度场采集、电弧力测试等手段研究活性剂对电弧影响,通过熔池Bi粒子示踪实验探究活性剂对表面张力温度梯度影响。结果表明:与常规TIG焊相比,粉煤灰复合活性剂可以使焊缝熔深增深1.4倍,熔宽减小,深宽比是常规TIG焊的1.43倍。粉煤灰复合活性剂中氟化物的解离和电离吸热过程、带电粒子的电子扩散和复合过程可以促进电弧收缩,使焊接电压升高,热输入量提高。而活性剂
湿法冶金因独特的工艺技术广泛应用于有色金属的提取过程。与火法冶金相比,湿法冶金具有污染较容易得到控制、对原料适应性强、冶金过程具有较强选择性、规模可控、机动性强、有利于综合回收有价金属、成本较低及能够得到纯度较高的产品等优点。数值模拟建模和仿真是研究和优化湿法冶金过程的一种成本较低、效率较高的方法。本文综述了湿法冶金工业中电积锌和电积铜过程的电流效率、电解液流场及电场等关键技术参数的多物理场数值模拟的研究进展,概述了模拟仿真在湿法冶金工业中的实际应用价值和意义。
由于环境友好性、高的地球丰度和稳定的物理化学性质,三氧化钨在光电响应、光催化领域应用潜力巨大,受到了人们的广泛关注.薄膜形态的光催化材料能够避免粉体材料的团聚问题,并且在转移、回收再利用方面优势明显,因此制备用于光催化的三氧化钨薄膜是当前的研究前沿.本文通过磁控溅射在石英玻璃基底上沉积三氧化钨薄膜,研究了不同基底温度对薄膜结构和形貌的影响.采用X射线衍射、X射线光电子能谱、场发射扫描电镜、紫外可见吸收光谱、电化学工作站、光催化自组装平台对薄膜的成分形貌、光电化学性能、光催化活性进行表征.测试结果表明:基底
以电解铜粉和酚醛树脂包覆的毫米级短碳纤维为原料,通过球磨—冷压—加压烧结制备了微米级短碳纤维/铜复合材料,研究了短碳纤维长度和分散程度对材料力学和摩擦性能的影响。结果表明:球磨工艺可有效缩短碳纤维长度,制备均匀分散且长度均匀(20~40μm)的微米级碳纤维,进而保证了材料在摩擦过程中可连续产生均匀细小的碳颗粒以阻碍材料的黏着,改善材料的摩擦稳定性和耐磨性。球磨时间不足时,短碳纤维长度差异大且局部存在纤维缠结,摩擦过程中富铜区黏着加剧,易产生片状脱落,磨损较大(2.32×10-4mm<
基于金纳米材料光学性能优良、稳定性高以及易于表面功能化等特点而建立的纳米金光学传感检测方法,具有灵敏度高、准确、易操作、可视化和成本低等优点.金纳米材料类传感器是利用功能化纳米金与目标物之间发生相互作用,使得金纳米颗粒的尺寸、形状和聚集状态发生改变,从而引起溶液颜色、荧光和散射强度发生变化,为目标物的快速检测提供了出色的测定平台.为更好地介绍金纳米材料在现代检测领域的重要作用,本文首先总结了近年来出现的四种常见纳米金光学传感检测方法:纳米金聚集光学传感法、纳米金刻蚀光学传感法、纳米金荧光光学传感法、纳米金
结合磁脉冲成形、半固态成形以及钎焊的复合优势,采用磁脉冲辅助半固态钎焊的方法来实现Cu/Al异质金属管件的连接。基于LS-DYNA对钎焊过程进行了多物理场耦合仿真,分析了钎料厚度对流变行为的影响,提出了综合考虑氧化膜去除效果及钎料流失缺陷的壁厚设计思路。利用附加能谱仪的电子探针显微分析仪和电子万能材料试验机研究了半固态Zn-15Al-1.0Si钎料的厚度对钎焊接头质量的影响。结果表明:在钎焊过程中,半固态钎料所受压、剪应力复合作用随着其厚度的增加而变弱,且在搭接区域中部最弱。钎料过厚,其与母材两侧难以形成
制动系统是交通运输和工业设备的重要组成部分,在高速、高载、高温的摩擦工况下,接触表面会因剧烈磨损而产生磨屑,并在复杂的摩擦化学反应下形成厚度为几微米至几十微米的摩擦膜,其被称为“第三体”.制动时,第三体经历了塑性变形、氧化、粘附、分层等变化,对制动材料的摩擦磨损性能产生重要影响,即制动材料的摩擦磨损性能取决于第三体的性质.因此,掌握第三体的组织结构、形成及演变机制有利于对制动材料摩擦磨损性能及机理的深入研究,从而为新型制动材料的研制提供依据.第三体的早期研究主要集中在采用SEM、EDX、TEM等手段分析其
本文提出一种以煤沥青(CTP)为碳源,乙酸镖为催化剂前驱体,简单通用的多壁碳纳米管(MWCNTs)催化热解生长工艺。借助SEM、TEM、Raman及TGA等分析手段对样品微观形貌结构、缺陷度及含量进行表征,系统探索了温度、催化剂用量及生长时间对MWCNTs含量、晶体缺陷、长径比的影响规律。结果表明:Ni催化生长的MWCNTs璧厚约10 nm,管径几十纳米;850-1000 t范围内,随温度升高,拉曼光谱中D1峰和G峰强度比(ID1/IG)由