基于v-SVR的无参考3D点云质量评估模型

来源 :青岛大学学报(自然科学版) | 被引量 : 0次 | 上传用户:lzfx_521
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了实现对3D点云质量有效监控,提出一种基于v-SVR的无参考3D点云质量评估模型。首先,分析失真点云编码相关参数与主观质量之间的关系,确定编码设置对主观质量的影响。其次,分析相同编码设置下不同内容特性对主观质量的影响,并提出了一个能够估计表征点云内容特性的几何特性因子和纹理特性因子的模型。最后,将量化参数、位置量化尺度、纹理特征因子、几何特征因子作为v-SVR的输入参数,主观质量分数作为输出参数,训练并得出一个反映人眼视觉特性的无参考3D点云质量评估模型。实验结果表明,与其他典型点云质量评估模型(
其他文献
为实现苹果早期霉心病较高精度的检测,该研究采用对称极坐标法(Symmetrized Dot Pattern,SDP)将苹果声振信号变换为雪花图,然后采用AlexNet、VGG16和ResNet50卷积神经网络以迁移学习方式深度挖掘SDP雪花图像的特征信息,将其输入到支持向量机(Support Vector Machine,SVM)分类器,对霉心程度≤7%的苹果进行检测。研究结果表明,当时间间隔系数
期刊
海胆、海参、扇贝等水下珍品在渔业中具有重要意义和价值,最近,利用机器人捕捞水下珍品成为发展趋势。为了探测水下珍品的数量及分布情况,使水下机器人获得更加可靠的数据,该研究提出基于注意力机制与改进YOLOv5的水下珍品检测方法。首先,使用K-means匹配新的锚点坐标,增加多个检测尺度提升检测精度;其次,将注意力机制模块融入特征提取网络Darknet-53中获得重要特征;然后,利用Ghost模块的轻量
期刊
随着深度学习技术在植物表型检测领域的应用,有监督深度学习逐渐成为植物表型信息的提取与分析的主要方法。但由于植物结构复杂、细节特征多,人工标注的成本和质量问题已成为制约技术发展的瓶颈。该研究针对玉米苗期植株图像分割问题提出一种基于深度掩码的卷积神经网络(Depth Mask Convolutional Neural Network,DM-CNN),将深度图像自动转换深度掩码图像,并替代人工标注样本完
期刊
针对传统图像分类模型泛化性不强、准确率不高以及耗时等问题,该研究构建了一种用于识别不同部位羊肉的改进ResNet18网络模型,并基于智能手机开发了一款可快速识别不同部位羊肉的应用软件。首先,使用数据增强方式对采集到的羊背脊、羊前腿和羊后腿肉的原始手机图像进行数据扩充;其次,在ResNet18网络结构中引入附加角裕度损失函数(ArcFace)作为特征优化层参与训练,通过优化类别的特征以增强不同部位羊
期刊
小麦品种的纯度和小麦产量密切相关,为了实现小麦种子品种的快速识别,该研究利用高光谱图像技术结合多尺度三维卷积神经网络(Multi-Scale 3D Convolutional Neural Network,MS-3DCNN)提出了一种小麦种子的品种识别模型。首先,利用连续投影算法(Successive Projections Algorithm,SPA)对原始高光谱图像进行波段选择,以减少MS-3
期刊
春见柑橘个体小、单株果树柑橘密集、柑橘之间的形态与颜色相似度高且易被树叶严重遮挡,这些特点给春见柑橘检测与计数带来了较大困难。该研究以实际春见果园环境中的春见柑橘作为检测与计数对象,提出了一种以春见柑橘为检测目标的基于特征递归融合YOLOv4网络模型(YOLOv4 network model based on recursive fusion of features,FR-YOLOv4)。针对春见
期刊
为实现自然环境下蓝莓果实成熟度的精确快速识别,该研究对YOLOv4-Tiny网络结构进行改进,提出一种含有注意力模块的目标检测网络(I-YOLOv4-Tiny)。该检测网络采用CSPDarknet53-Tiny网络模型作为主干网络,将卷积注意力模块(Convolution Block Attention Module,CBAM)加入到YOLOv4-Tiny网络结构的特征金字塔(Feature Py
期刊
大豆单株豆荚数检测是考种的重要环节,传统方法通过人工目测的方式获取豆荚类型和数量,该方法费时费力且误差较大。该研究利用大豆单株表型测量仪采集到的表型数据,通过融合K-means聚类算法与改进的注意力机制模块,对YOLOv4目标检测算法进行了改进,使用迁移学习预训练,获取最优模型对测试集进行预测。试验结果表明,该研究模型的平均准确率为80.55%,数据扩充后准确率达到了84.37%,比育种专家目测准
期刊
由于田间害虫种类多,大小、形态、姿态、颜色和位置变化多样,且田间害虫的周围环境比较复杂,使传统田间害虫检测方法的性能不高,而现有基于卷积神经网络的作物害虫检测方法采用固定的几何结构模块,不能有效应用于田间多变的害虫检测。该研究在VGG-16模型的基础上构建了一种可形变VGG-16模型(Deformable VGG-16,DVGG-16),并应用于田间作物害虫检测。在DVGG-16模型中,引入可形变
期刊
针对根系图像中的断根易导致根系表型信息难以精确获取的问题,该研究提出一种根系径向生长修复算法,并基于此进行不同抗性玉米种子根系表型对比研究。首先,采用自适应对比度增强、直方图灰度查找、椒盐去噪等对采集的根系图像进行预处理,从复杂背景中分离出根系图像;再通过YOLO-V3检测模型进行根系图像中主根根尖识别;最后,自根尖开始进行径向生长,通过分叉点主根提取策略、端点自适应修复策略实现主根图像修复,并提
期刊