【摘 要】
:
象虫金小蜂是烟草甲的重要寄生性天敌,为探究象虫金小蜂的人工繁殖技术,本文研究了象虫金小蜂的寄主选择性偏好,筛选了象虫金小蜂及其寄主烟草甲的最佳饲养密度,并评价了象虫金小蜂在不同释放密度和方法下对烟草甲的防效。结果表明:象虫金小蜂对4种寄主的选择系数从大到小依次为烟草甲、绿豆象、菜豆象和玉米象;象虫金小蜂更偏好选择烟草甲幼虫作为产卵寄主。4种寄主中,以烟草甲为寄主的象虫金小蜂发育历期最短、出蜂数最多
【基金项目】
:
贵州中烟工业有限责任公司计划项目([2017]25); 贵州省高层次创新型人才培养计划-“百”层次人才(黔科合平台人才[2020]6003);
论文部分内容阅读
象虫金小蜂是烟草甲的重要寄生性天敌,为探究象虫金小蜂的人工繁殖技术,本文研究了象虫金小蜂的寄主选择性偏好,筛选了象虫金小蜂及其寄主烟草甲的最佳饲养密度,并评价了象虫金小蜂在不同释放密度和方法下对烟草甲的防效。结果表明:象虫金小蜂对4种寄主的选择系数从大到小依次为烟草甲、绿豆象、菜豆象和玉米象;象虫金小蜂更偏好选择烟草甲幼虫作为产卵寄主。4种寄主中,以烟草甲为寄主的象虫金小蜂发育历期最短、出蜂数最多,成蜂质量最重。每瓶接种150头烟草甲能获得最佳出虫量1725.00头/瓶,在此密度下饲养烟草甲40 d左右,每瓶接入40对象虫金小蜂,可获得最佳出蜂数608.00头/瓶。无论在烟箱还是烟垛条件下,象虫金小蜂对烟草甲的种群数量均具有一定控制作用,大部分处理的防效在77.9%~92.0%之间。综上所述,象虫金小蜂更偏好寄生烟草甲,每个饲养瓶接种150头烟草甲成虫,40 d后接种40对/瓶象虫金小蜂可以作为象虫金小蜂人工繁殖的基本技术参数,且采用象虫金小蜂防治对烟草甲的种群数量有一定控制效果。
其他文献
随着汽车的普及,车辆计数的问题也逐渐出现,效率低下的传统车流检测方法已经无法达到精准计数的目的。本项目组针对这个问题提出新的方法,将YOLOv4目标检测算法与DeepSort目标跟踪算法相结合,进而改进实时车辆检测算法,并且达到精准识别和计数的目的。首先采用VOC格式的车辆数据集训练YOLOv4目标算法模型;得到初步目标检测模型后,再通过K-means聚类改进算法对图像进行特征提取;然后由Deep
随着智能识别技术的飞速发展,年龄预测已经日趋成熟,并且可以应用于各类人机交互系统,以及移动端的年龄预测APP中,可以给日常生活带来很大的便利。本文主要基于深度学习中的卷积神经网络模型来实现年龄的识别与预测,卷积神经网络通过其卷积层对图像特征的提取以及其池化层的降采样功能,能够很好地完成对图像信息的预测且不会出现过拟合现象。应用卷积神经网络模型完成年龄预测实验后,得到了准确率为93%的年龄预测结果,
随着电动汽车和自动驾驶技术的发展,电动汽车充电逐渐迈向自动化,充电口的识别定位是实现自动充电口的基础。以单目视觉为基础,提出一种远距离下电动汽车充电口目标识别方法。利用yolov5目标识别算法,建立复杂环境下远距离电动汽车充电口图像数据集,得到充电口的卷积神经网络识别模型,测试不同距离下充电口的识别定位效果,总体识别定位成功率为98.7%。可以更好的实现远距离识别定位的要求。
为解决传统音乐情感分类特征单一,导致训练效果差的问题,提出了一种多模态注意力融合网络模型,首先将执行情感分类使用的歌词和音频分离,将上下文特征提取方法与分类器相结合,从而提高特征提取效率;其次通过注意机制融合多模态特征,从而加快模型训练效率及情感分类准确率;接着提出了一种自适应孤立森林噪声方法增强模型对不均衡样本的适应性,并在一定程度上缓解模型过拟合问题.最后,将模型与LSTM、GRU、BI-LS
基于舆情事件的关键词抽取算法作为舆情监测的基础技术之一,其目的是在不同的舆情事件中抽取出人们关注的核心词汇,从而快速了解新闻内容。随着深度学习的发展,传统的无监督关键词抽取技术和有监督算法中的分类模型已经逐渐被基于深度学习的序列标注模型所替代。梳理无监督关键词抽取的限制性、分类模型在关键词抽取中的优势与不足、以及现有的深度学习对关键词抽取技术发展的帮助,重点分析整体关键词抽取技术的发展中卷积神经网
<正>慢性阻塞性肺疾病(COPD)是目前威胁人类健康的重要疾病之一,致死、致残率高[1]。研究表明,慢性阻塞性肺疾病急性加重(AECOPD)是导致COPD患者死亡的重要因素,而COPD患者每年发生0.5~3.5次急性加重[2]。氧疗是COPD患者常用的辅助呼吸治疗方法,传统氧疗方式已不能满足患者需求,经鼻高流量氧疗(HFNC)是一种新型无创呼吸支持手段,具有改善通气氧合及舒适性高等优点,已广泛应用
针对轴承故障诊断中数据集较小,现有诊断方法鲁棒性较低且易被噪声干扰的难题,提出了基于特征增强和卷积神经网络故障识别方法。首先对振动采样信号进行短时傅里叶变换(STFT)与小波变换处理,获取时频图,然后对时频图进行卷积操作,获取故障信号特征图。最后,将获得的特征图通过通道注意力机制模块,再通过卷积神经网络,实现对轴承故障的分类。结果表明,该方法在西储大学数据集添加-40 dB噪声的情况下,故障准确率
低年级学生由于刚刚进入语文学习的大门,其识字能力还未形成,识字教学因此成为小学生语文学习的基础,这要求教师采用科学的识字方法开展教学。课堂是教师开展教学活动的主阵地,教师要积极探究形式多样的识字方法,以便帮助学生理解字形,掌握汉字,增加学生的识字量。
互联网技术的广泛普及使得网络用户数量急剧增加,网络传输数据体量也随之增大,在多种因素的影响下,内部异常数据占比也越来越高,为网络数据传输、应用带来了极大的困难,为此提出一种基于深度学习的网络传输数据异常识别方法。该方法在LSTM神经网络模型的应用下,大幅度提升了评价指标——F1值,能够更加精确的识别异常数据,为网络传输数据的应用与处理提供更有效的方法支撑。应用高斯混合模型分割网络传输数据集合(训练
研究目的:上海市自2012年起在高中试行专项化体育课程改革,进行专项化改革后学生在课上的运动负荷的实际情况,如何在80分钟的体育课上如何达到较高运动负荷以促进学生身心健康发展,是当前高中专项化体育课程改革中备受关注的问题。因此,本研究以内容主题"篮球—策应配合"的课程为例,通过对该课程的教学内容的组织和教学方法手段的优化,提升该课程上学生的运动负荷,并通过优化前(对照班)和优化后(实验班)的前后数