论文部分内容阅读
在传统二进制编码遗传算法(GA)的基础上,提出一种基于Rough集的启发式人工选择算子和人工选择算法。利用粗糙集对遗传算法的历史数据进行分析,发现重要基因位,获得重要模式信息,并以此为启发式信息,选择优秀模式进行人工育种,从而对复杂优化问题进行有效求解。采用该算法对典型测试函数进行了验证,算例结果表明,人工选择算法加速了常规遗传算法进化速度,提高了收敛效率。