基于特征加权聚合的图像检索目标对抗攻击方法

来源 :计算机应用研究 | 被引量 : 0次 | 上传用户:caocao0121
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于深度学习的图像检索技术使得图像隐私泄露成为一个亟待解决的问题.利用对抗攻击生成的对抗样本,可在一定程度上实现隐私保护.但现有针对图像检索系统的目标对抗攻击方法易受选取目标样本质量和数量的影响,导致其攻击效果不佳.针对该问题,提出了一种基于特征加权聚合的图像检索目标对抗攻击方法,该方法将目标图像的检索准确率作为衡量样本质量的权重,利用目标类中少量样本的特征进行加权聚合获取类特征作为最终攻击目标.在RParis和ROxford两个数据集上的实验结果表明,该方法生成的对抗样本相比TMA方法,检索精度平均提升38%,相比DHTA方法,检索精度平均提升7.5%.
其他文献
V2G网络下PLC链路带宽受限、高误码率等特点导致现有的TCP NewReno拥塞控制机制缺乏对丢包类型的有效判断,将链路上由噪声干扰的随机错误丢包与网络拥塞丢包统一当做拥塞事件处理,从而造成不必要的拥塞避免,导致了低吞吐量问题.根据此问题,提出了一种基于带宽自适应的拥塞控制算法.该算法通过分组预测拥塞等级感知网络状态,由此估计可用带宽来判断丢包类型,实现了拥塞窗口自适应调节.仿真结果表明该算法在拥塞窗口的增长、吞吐量、公平性、收敛性和友好性等方面都优于现有算法,V2 G网络的吞吐量得到明显提升.
针对无人机(unmanned aerial vehicle,UAV)多输入多输出(multiple input multiple output,MIMO)信道,提出了使用二维单环和三维半球体建模的无人机信道模型.在提出信道模型的基础上,推导并分析了参考模型和仿真模型的空—时相关函数(space time correlation function,STCF)、多普勒功率谱密度(Doppler power spectral density,DPSD)和二阶统计特性如包络电平交叉率(level crossing
当前对于短期负荷预测的研究主要针对影响因素的分析以及模型的改进,很少有对模型的鲁棒性进行研究.以极限学习机(extreme learning machine,ELM)作为研究对象,针对ELM模型的鲁棒性问题进行了深入的研究,并将其应用到短期负荷预测问题中.ELM模型的鲁棒性受损失函数的影响,当前ELM模型在处理含异常点样本时,鲁棒性差、预测精度较低.针对该问题,提出了一种基于p阶最大相关熵准则的损失函数,并将该损失函数应用到ELM模型中,以提高其在短期负荷预测问题中的鲁棒性.提出了一种估计实际样本中异常点
针对室内空间内的人员定位困难问题进行了研究,提出了一种基于Wi-Fi指纹法和循环神经网络(re-current neural network,RNN)的多传感器融合室内定位算法.该算法将智能手机接收到的路由器信号强度作为时间序列输入RN N,通过RN N获得对行人精度较高的定位,与此同时获取智能手机中惯性测量单元提供的位置信息.随后,通过粒子滤波算法对两种定位方式的定位结果进行融合.在实际场景下设计了多组实验进行对比.实验结果表明,该算法定位平均误差为0.9 m,优于加权K近邻等算法,可以为行人提供实时的
现有的大部分基于非负矩阵分解的链路预测方法仅考虑网络拓扑结构信息而忽略节点与链接聚类信息.针对此问题,提出一个融合聚类信息的对称非负矩阵分解的链路预测模型.首先,该模型利用对称非负矩阵分解去捕获网络节点相似度信息;其次,使用基于Jaccard的节点和链接聚类系数去保持网络局部结构信息;最后,启用拉格朗日乘法规则去学习模型参数.在六个真实无向无权和四个加权网络上的实验结果表明,该方法在两种不同类型网络预测精确度分别提升了1.6%和8.9%.
为了提升实际基站部署时的合理性,针对异构蜂窝网络(HetNet)的基站部署,同时考虑了宏基站(mac-ro base station,MBS)与宏基站、宏基站与微基站(pico base station,PBS)部署的相关排斥性,采用蜂窝网络渐进增益分析法推导出两层非泊松网络的覆盖率,并针对网络能效进行分析,推导出系统吞吐量和网络总能效.最后,提出了一种针对微基站发射功率的能效优化算法,通过优化PBS发射功率使网络能效最大化.仿真结果表明,提出的模型覆盖率优于两层HPPP模型,能效优化算法最高可使系统能效
在毫米波大规模MIMO系统中,一般采用混合模拟和数字预编码替代全数字预编码来减少射频链和能量消耗.然而,在计算最优无约束混合预编码时,奇异值分解(SVD)具有较高的复杂度.因此,提出了一种基于投影近似子空间跟踪(PAST)的低复杂度混合预编码算法.该算法在计算每个子速率的最优无约束混合预编码时,利用PAST算法估计需要的右奇异矩阵部分主要列向量,从而避免了高复杂度的SVD过程.仿真结果表明,不论是在全连接、混合连接还是在子连接系统结构中,该算法在频谱效率上都接近基于SVD的混合预编码,并且随着发送天线数的
近年来,以内生安全为主要技术机制的多变体系统在防御零日漏洞攻击中表现出了巨大的潜力.但是现有研究很少涉及多样性和安全性之间的量化评估.对此,提出面向多变体系统的执行体多样性度量方法,该方法通过执行体属性和属性类型构建执行体属性矩阵,结合属性多样性和局部多样性综合评估执行体集的空间多样性,并针对矩阵参数及其多样性权重进行分析以达到系统最大多样化.构建了一个典型的多变体系统及零日攻击模型来评估该指标的有效性,评估结果表明,该多样性度量方法能有效衡量多变体系统中执行体间的异构性,并根据执行体异构性和系统攻击成功
针对现有密文域可逆信息隐藏算法中存在嵌入率低、安全性不足等问题进行了研究,提出了一种利用图像像素间相关性的大容量密文域可逆信息隐藏方案.首先利用图像位平面间相关性减小冗余,再使用Peano曲线对位平面进行扫描,利用游程霍夫曼编码对每个位平面进行压缩,而后利用图像高位信息对低位空间进行填充,最后用填充消息作为隐藏密钥对秘密信息异或加密实现嵌入.实验结果表明,该方法可完全可逆地恢复原始图像,平均最大嵌入容量达2.53 bpp.
针对目前大多数视频隐写算法不满足Kerckhoffs准则进行了研究,在博弈论隐写模型的基础上,提出了一种新的基于运动矢量修改的H.264视频隐写算法.该算法利用人眼视觉特性中对运动矢量的方向和速度特性敏感程度不同计算失真代价函数,再根据博弈论相关理论结合失真代价函数得到每个运动矢量的嵌入概率,实现了一种在理论上满足Kerckhoffs准则的视频隐写算法.实验结果表明,与同类型视频隐写算法相比,在满嵌时该算法的PSNR和SSIM的平均变化值分别降低了18.5%和12%,具有较好的安全性和不可感知性.