论文部分内容阅读
神经元尖峰电位的识别和分类,是神经信息处理中的关键环节之一,而尖峰电位的特征提取是识别和分类的重要基础。针对尖峰电位的特征提取和分类,提出一种基于局部保持投影(LPP)的无监督算法,对近邻参数进行了自动识别和选择,使用基于原型向量的分布离散度标准,尖峰电位的特征得到充分提取和分离。仿真和实际数据实验结果表明:基于局部保持投影的无监督特征提取和分类算法,比传统主成分分析(PCA)方法能更加有效地实现特征提取和分离。