论文部分内容阅读
根据孤立点是数据集合中与大多数数据的属性不一致的数据,边界点是位于不同密度数据区域边缘的数据对象,提出了基于相对密度的孤立点和边界点识别算法(OBRD)。该算法判断一个数据点是否为边界点或孤立点的方法是:将以该数据点为中心、r为半径的邻域按维平分为2个半邻域,由这些半邻域与原邻域的相对密度确定该数据点的孤立度和边界度,再结合阈值作出判断。实验结果表明,该算法能精准有效地对多密度数据集的孤立点和聚类边界点进行识别。