论文部分内容阅读
针对传统空间关联规则挖掘对数据硬化分导致的"尖锐边界"问题,提出了一种顾及模糊属性的空间关联规则挖掘方法。该方法引入模糊集理论,将模糊空间属性通过隶属函数转化为隶属度表示的模糊数值,从而将其划分为模糊集合。然后使用改进的模糊关联规则挖掘算法扫描数据库,根据相应的支持度得到频繁项集,最终提取出关联规则。实验结果表明,该方法能够对带有模糊属性的空间数据进行关联规则挖掘,且在一定程度上提高了挖掘结果的兴趣度。