应急排气管道对主烟囱中速度及气体混合的影响

来源 :辐射防护 | 被引量 : 0次 | 上传用户:liu554802016
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
应用计算流体力学(CFD)方法,模拟内部的应急排气管道存在与否对主烟道内气体组分混合的影响情况.以速度及示踪气体浓度的变异系数(COV)表征截面混合均匀性,对比研究了高风速(约13.1 m/s)、中风速(约8.2 m/s)、低风速(约0.56 m/s)三种典型工况.结果表明:主烟道内风速13.1 m/s,无内部管道可使速度及气体浓度分布更为均匀,各截面平均COV值分别降低2.8%和2.0%;风速8.2 m/s,无内部管道利于速度均匀分布(COV值降低1.5%),却降低气体组分的混合均匀性(COV值升高3.1%);风速0.56 m/s,速度和气体组分在无内部管道时呈现更好的混合均匀性,COV值分别降低4.8%和0.02%.对比仿真结果与实验数据,92.5%以上的仿真数据与实验值偏差低于15%.
其他文献
粉末冶金是一种以金属粉末为原料,通过压制和烧结形成最终零部件的金属成形工艺,可以生产形状非常复杂的工件,已有100多年的历史.粉末冶金是公认的优良生产工艺,可针对不同行业的应用需求生产高质量的烧结结构部件.与其他金属成形技术(如锻造、金属铸造及机械加工)相比,粉末冶金工艺具有成本低、灵活性高以及制备性能优秀等优势,属于材料制备的前沿.
陶瓷与金属由于在热膨胀系数上的差异,导致在热加工后结合强度较差.冷喷涂是一种新型绿色环保的表面涂层和增材制造技术,其优点是结合强度较高,对基体热影响小,残余应力为压应力,能够直接在陶瓷表面制备结合力较高的金属涂层,是一种潜在的陶瓷金属化技术.本文综述了国内外冷喷涂陶瓷金属化技术的研究进展和技术现状,着重介绍了冷喷涂陶瓷金属化涂层的组织结构特点和工艺优化方案,分析了金属陶瓷界面的两种结合现象和结合机理,并展望了冷喷涂陶瓷金属化技术的应用设想.
NiTi作为一种形状记忆合金,具有优异的形状记忆效应、超弹性、耐腐蚀性、生物相容性,在生物医用、航空航天、微机电等领域均有着广泛的应用.增材制造(additive manufacturing,AM)技术作为一种新兴的加工方式,能够提高NiTi合金加工效率,并扩展NiTi合金应用领域.本文介绍了近年来国内外增材制造NiTi合金的研究进展,主要包括增材制造加工过程中原料及工艺的选择,熔池、晶粒、析出物、缺陷等的组织特点,原料、工艺参数、热处理对增材制造NiTi合金力学性能、相变温度、形状记忆效应、超弹性、表面
利用不同成形工艺、原料粉末和热处理制备激光选区熔化3D打印AlSi10Mg试样并进行拉伸性能研究,讨论了影响激光选区熔化3D打印AlSi10Mg拉伸性能的影响因素,包括3D打印成形工艺、粉末物理性能、热处理制度等.结果表明:激光能量密度通过影响试样相对密度进而对拉伸性能产生影响,能量密度过低时,试样孔洞大多分布在熔池交界处和熔池底部,能量密度过高时,试样孔洞多分布在熔池内部.球形度较高的粉末由于具有良好的物理性能和极低的空心粉率,其成形件拉伸性能较好.退火温度在270~300℃时,随着温度的升高,Si相逐
脉冲X射线能谱测量,对于强激光装置中的物理诊断以及辐射防护具有重要意义.脉冲X射线具有脉冲时间短、注量大、能谱范围宽等特点,常规脉冲测量技术往往受到探测器死时间、 堆积效应的限制而无法适用.目前多个国家都建立了强激光装置的研究平台,并开展X射线能谱测量相关研究.本文首先介绍了基于吸收法原理且适用于中低能脉冲X射线的测量方法:Ross Pair法和衰减法.然后针对这两种方法从5个方面(探测器结构、滤片材料、探测介质选择、散射控制以及解谱方法)综述了脉冲X射线吸收谱仪的研究进展,并分析了各自的适用性.目前激光
电磁辐射、电离辐射、光辐射等辐射导致的组织器官损伤过程中常伴有活性氧(ROS)的激活和DNA损伤,而超氧化物歧化酶(SOD)是生物体内广泛存在的一种抗氧化金属酶,在氧化-抗氧化平衡调控中发挥着重要的作用,并且参与了众多疾病的发生与发展,其中胞外超氧化物歧化酶(EC-SOD)主要分布于细胞外基质中.大量研究表明EC-SOD在多种组织器官的辐射损伤中发挥着抗辐射的作用,其主要通过降低ROS水平、抗血管生成,抗趋化和抗炎等方式防止细胞和组织的进一步损伤.因此,本文将对EC-SOD及其模拟物或类似物在辐射防护中的
本文建立了一种盐酸体系下用UTEVA树脂分离铀、α 谱仪测量铀同位素的分析方法.在600℃条件下灼烧4 h,通过混合酸和H2 O2的联合使用,使样品中的铀全部转移至溶液中.加入抗坏血酸使样品溶液始终保持还原体系,通过UTEVA树脂后实现铀的分离纯化,电镀制源后利用 α 谱仪测量.使用掺标样品和真实气溶胶样品对分析流程进行了验证,测量结果与目标值吻合度好,化学回收率稳定且高于95%,其变异系数为±5%.
作为高性能复杂金属构件的新兴制造技术,增材制造已被应用于航空航天、汽车工业、医疗和核电等领域.金属增材制造工艺涉及传热、热力、相变及流动等复杂物理现象,不同尺度及跨尺度数值模拟结合实验验证可实现对增材制造过程中复杂物理现象的理解、调控及优化,为高质量、高精度、高性能金属构件的成形提供有力支撑.本文综述了宏观、介观、微观及多尺度下金属增材制造的数值模拟,阐述了温度场、热应力场、粉末粉床、熔池流动及凝固行为的数值仿真方法,展望了增材制造数值模拟方法的发展趋势.
机体受到意外照射或在接受放射治疗时会引起放射性皮肤损伤,皮肤组织中最先发生水分解而产生活性氧,其次呼吸链及炎症过程也会产生大量活性氧.活性氧作为信号分子在调控生理生化过程中起到了不可替代的作用.本文就辐射刺激后皮肤内活性氧变化、活性氧干预放射性皮肤损伤的机制以及活性氧消除调控放射性损伤等三个方面的研究进展进行综述,旨在联系活性氧代谢与放射性损伤的生理病理反应,为相关研究及临床治疗提供便利.
以氢化脱氢钛粉为原料,采用粉末轧制和真空烧结工艺制备出两种不同厚度的多孔钛板.利用孔径及孔径分布分析、扫描电镜观察、拉伸实验、三点弯曲实验、剪切强度测试等手段,对垂直于轧制方向和平行于轧制方向的板材力学性能进行了研究,并从孔径分布和烧结颈发育方面对其进行了解释.结果表明,1.96 mm厚的多孔钛板比1.32 mm厚多孔钛板的最大孔径小,且其孔径分布相对均匀;对于厚度相同的粉末轧制多孔钛板,垂直于轧制方向的板材平均抗拉强度比平行于轧制方向的增大25%、弯曲强度增大45%;随着轧制多孔钛板厚度的增加,其抗拉强