Surface pseudocapacitance of mesoporous Mo3N2 nanowire anode toward reversible high-rate sodium-ion

来源 :能源化学 | 被引量 : 0次 | 上传用户:erwewrasfrfa
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Sodium-ion storage devices are highly desirable for large-scale energy storage applications owing to the wide availability of sodium resources and low cost.Transition metal nitrides(TMNs)are promising anode materials for sodium-ion storage,while their detailed reaction mechanism remains unexplored.Herein,we synthesize the mesoporous Mo3N2 nanowires(Meso-Mo3N2-NWs).The sodium-ion storage mecha-nism of Mo3N2 is systematically investigated through in-situ XRD,ex-situ experimental characterizations and detailed kinetics analysis.Briefly,the Mo3N2 undergoes a surface pseudocapacitive redox charge stor-age process.Benefiting from the rapid surface redox reaction,the Meso-Mo3N2-NWs anode delivers high specific capacity(282 mAh g-1 at 0.1 A g-1),excellent rate capability(87 mAh g-1 at 16 A g-1)and long cycling stability(a capacity retention of 78.6%after 800 cycles at 1 A g-1).The present work highlights that the surface pseudocapacitive sodium-ion storage mechanism enables to overcome the sluggish sodium-ion diffusion process,which opens a new direction to design and synthesize high-rate sodium-ion storage materials.
其他文献
Numerous aspects of the water oxidation mechanism in photosystemⅡhave not been fully elucidated,especially the O-O bond formation pathway.However,a body of experimental evidences have identified the O5 and W2 ligands of the oxygen-evolving complex as the
The optoelectronic performance of CsPbBr3 nanocrystal (NC) has been dramatically limited by the severe charge carrier recombination and its narrow light absorpt
Oxygen reduction reaction (ORR) is an important process for the conversion and utilization of a wide range of renewable energy sources, and is critical for the
Lithium-sulfur(Li-S) batteries are one of the most promising rechargeable storage devices due to the high theoretical energy density.However,the low areal sulfur loading impedes their commercial development.Herein,a 3 D free-standing sulfur cathode scaffo
With the development of portable electronic devices, electric vehicles, and power storage systems, the demand for rechargeable batteries with high energy densit
Nickel-iron layered double hydroxides(NiFe LDHs) have been identified as one of the best promising electrocatalysts-candidates for oxygen evolution reaction(OER). However, the catalytic activity effected by interlayer water molecules is ignored and rarely
Zero-dimensional(0D)carbon quantum dots(CQDs),as a nanocarbon material in the carbon family,have garnered increasing attention in recent years due to their outs
Bismuth sulfide (Bi2S3) has attracted particular interest as a potential anode material for sodium-ion batteries (SIBs).However,the low electrical conductivity
Electrospinning has been proven as a highly versatile fabrication method for producing nano-structured fibres with controllable morphology,of both the fibres th
Electrochemical nitrogen fixation via a convenient and sustainable manner,exhibits an intriguing prospect for ammonia generation under ambient conditions.Currently,the design and development of high-efficiency and low-cost electrocatalysts remains the maj