高能量密度介电储能材料研究进展

来源 :硅酸盐学报 | 被引量 : 0次 | 上传用户:z534921
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
电介质电容器是通过在静电场下介质的极化的形式存储电能的一种器件,由于其功率密度高,放电时间短,在脉冲功率电子器件中有着广泛应用。然而,电介质电容器的的储能密度较低(<2 J/cm3),这限制了其进一步的发展,而解决该问题的核心在于开发高能量密度介电储能材料。对介电储能材料的发展历史、性能特点进行了介绍,并分析了不同种类介电储能材料的研究现状,以及介电储能材料一些尚未解决的问题,并对该领域未来的发展方向作出了展望。
其他文献
以石油焦为还原剂和碳源,采用固相法制备了一系列xLiFePO4·yLi3V2(PO4)3/C(n(x):n(y)=1∶0,0∶1,2∶1,4∶1,6∶1,8∶1)复合正极材料。通过X射线衍射仪(XRD)、透射电子显微镜(TEM)和电化学性能测试等表征了n(x)∶n(y)的掺杂比例对复合正极材料组成、微观结构和电化学性能的影响。XRD分析表明,当n(x)∶n(y)为1:0和0∶1时,合成的复合正极材
SiC/SiC复合材料具有耐高温、抗氧化、耐烧蚀、抗热震等优异性能,是航空航天领域理想的高温结构材料。界面相是影响SiC/SiC复合材料性能的关键因素之一。依据陶瓷基复合材料界面相设计理念的不同,本工作将SiC/SiC复合材料界面相分为层状结构、难熔氧化物、稀有金属盐、多元陶瓷4大类,综述了各类界面相的材料种类与形式、力学及抗氧化性能改性效果、性能影响因素及作用机理、存在的问题,并对未来发展趋势进行了展望。
制备了Al—In—Mg—Sn—Ce五元铝合金阳极,通过极化曲线(Tafel)、电化学阻抗(EIS)、自腐蚀速率、放电性能等研究手段,研究了不同热处理工艺对铝合金阳极电化学性能及自腐蚀性能的影响;用电子探针显微分析仪对合金放电后的元素成分和表面微观形貌进行检测,并探讨了热处理工艺对铝阳极组织结构的影响。结果表明,退火处理对冷轧过的合金表面析出物的数量和大小有一定影响,提高了铝合金的电化学活性和耐蚀性。此外,在350℃保温6 h的退火条件下,Al—In—Mg—Sn—Ce合金阳极材料在实际使用过程中具有出色的放
从原子、电子层次深入研究矿物材料的表界面功能设计,将是本领域的一个重要研究趋势。综述了矿物材料表界面计算模拟的研究进展,归纳了界面复合、表面改性和结构改型等3个研究方向,概述了其中原子、电子层次微观机制的相关内容,并对矿物材料功能设计面临的挑战和未来发展进行总结和展望。
水系锌离子电池作为一种新型二次离子电池,因其低成本、高安全、环境友好以及高功率密度等特点,在大规模储能等领域具有广阔的应用前景。以本课题组在水系锌离子电池领域的研究成果为基础,结合国内外同行的最新研究工作,主要从正极材料、负极材料和电解液3个方面系统性地总结了水系锌离子电池的研究进展,凝练出当前该领域电池循环寿命短等瓶颈问题并提出了“单相反应机制”等解决思路,最后对高能量密度、高安全、长寿命水系锌离子电池未来的研究和发展方向进行了展望。
以2种典型不同层电荷密度的蒙脱石为研究对象,通过烷基铵法测定了2种蒙脱石的层电荷密度,分别为0.342和0.439。研究了层电荷密度对蒙脱石二维剥离及其剥离后纳米片表面电性的影响。通过分子动力学模拟解释了层电荷密度对蒙脱石剥离二维纳米片和水化膨胀能力的影响机理。结果表明:层电荷密度低的蒙脱石具有更好的水化膨胀能力,更易剥离制备二维纳米片。层电荷密度高的蒙脱石剥离的二维纳米片单位面积的电负性更大。蒙脱石层电荷密度越低,其晶层表面对水分子吸附作用越弱,层间阳离子水化能力更强,水化膨胀能力大,也解释了层电荷密度
相比于液态锂电池,固态锂金属电池由于电解质不易燃、不挥发而具有更高的安全性。此外,固态电解质能够有效抑制锂枝晶的生长,使基于高能量密度的锂金属作为负极材料成为可能。但是,固态锂金属电池存在着界面阻抗大、固体电解质/电极兼容性差、电解质离子电导率低及电化学窗口较窄等问题。因此,开发高性能的柔性固体电解质对推动固态锂金属电池的发展起着重要作用。本工作总结了固态锂金属电池中聚合物与不同类型填料复合最新研究进展及复合固体电解质匹配电极材料时存在的界面阻抗大问题与解决策略。
针对航空发动机涡轮叶片边缘裂纹缺陷难以进行检测的难题,提出了一种基于弱磁检测技术缺陷判定方法的新算法。首先从理论上分析了弱磁检测技术对涡轮叶片边缘裂纹缺陷检测的可行性,其次,为减少检测提离高度设计了扫查工装并在地磁场环境下对人工刻伤的涡轮叶片进行弱磁检测,最后通过磁梯度法与极值法相结合的方法对原始信号进行数据处理,提取异常信号。结果表明:裂纹处磁感应强度信号变化明显,缺陷检测位置误差在2.5 mm以内;磁梯度法与极值法相结合能减少噪声干扰,提高信噪比,放大缺陷信号;裂纹深度在0.2~0.4 mm时,磁感应
采用热还原法制备了一种具有氮空位的石墨相氮化碳(g-C3N4)/高岭石复合材料,利用扫描电子显微镜、X射线衍射、红外光谱、紫外-可见分光光度法、X射线光电子能谱仪等手段对复合材料进行表征,并以双酚A(BPA)为目标污染物,系统考察了复合材料在可见光/过硫酸盐催化降解体系中的催化活性。结果表明:优化条件下制备的样品NGK-10:1对BPA的降解效率最高,分别为g-C3N4和氮空位g-C3N
热电材料可以实现热能和电能的直接相互转换,在温差发电和固态制冷等领域具有重要应用,受到了学术界和工业界的广泛关注。本工作首先简述了热电材料研究的相关背景,然后根据材料工作的温度,对室温附近、中温区以及高温区一些典型热电材料的最新研究进展进行了概述,重点介绍了材料的晶体结构特点和性能优化策略。在此基础上阐述了热电能量转换技术在材料、器件和研发模式等方面所面临的困难和挑战。最后,对热电材料未来的发展方向提出了展望。