论文部分内容阅读
带电粒子在正交的电磁中曲线运动,恰当的运用合成与分解,将复杂运动分成两个简单运动处理,再利用分运动间的独立性、等时性,以及分运动与合运动间的等效性进行研究,会为解题带来很大的方便.例1如图1所示,空间的匀强电场沿-y方向,匀强磁场沿-z方向,有带正电粒子(已知m、q)从O点出发沿E+x方向以初速度v0=2E/B进入场,求:(1)此带电粒子到达的地方到x轴的最远距离.
Charged particles in the orthogonal electromagnetic curve movement, the proper use of synthesis and decomposition, the complex movement is divided into two simple motion processing, re-use of sub-movement between the independence, isochronism, and sub-movement and co-movement between Effectiveness of the study will bring great convenience to solve the problem.Example 1 As shown in Figure 1, the uniform electric field in the space along the -y direction, uniform magnetic field in the -z direction, there are positively charged particles m, q) Enter the field along the E + x direction at the initial velocity v0 = 2E / B from point O, and find: (1) The farthest distance to the x-axis where the charged particle arrives.