论文部分内容阅读
针对尺度不变特征变换(Scale-invariant feature transform,SIFT)算法在关键点特征描述向量阶段计算复杂并且维数较高的现象,提出了一种基于压缩感知理论的SIFT算法。通过压缩感知理论的稀疏特征表示方法,对SIFT关键点特征向量进行提取,将高维梯度导数向量降到低维稀疏特征向量,降低了关键点描述向量维度。采用欧式距离作为关键点的相似性度量,Best-Bin-First(BBF)数据结构避免穷举,使数据的运算量大为减少。实验结果表明,新算法对存在仿射变换的医学图像配准性能优