论文部分内容阅读
为了研究丢番图方程x^3+1=Dy^2(D〉0)的求解问题,利用唯一分解定理,证明了丢番图方程x^3+1=8y^2仅有整数解(x,y)=(-1,0),(23,±39),丢番图方程x^3+1=72y^2仅有整数解(x,y)=(-1,0),(23,±13),丢番图方程x^3+1=1352y^2仅有整数解是(x,y)=(-1,0),(23,±3),丢番图方程x^3+1=12168y^2仅有整数解(x,y)=(-1,0),(23,±1),并归纳得出了形如x^3+1=8k^2