论文部分内容阅读
实际应用中卡尔曼滤波的动态噪声和观测噪声往往不是固定的,提出运用新息自适应卡尔曼滤波法则对噪声进行实时估计。同时,为了克服新息自适应卡尔曼滤波要求系统模型十分精确的特点,基于神经网络的新息自适应卡尔曼滤波算法,通过使用神经网络进行误差补偿来提高滤波性能,并运用于高速公路变形监测中。结果表明:该模型与原始观测值的残差全部降到了0.25mm以下,说明该模型精度很高,在实际应用中具有一定的可行性。