论文部分内容阅读
通过对标准PSO算法中惯性权重和全局最好值的分析,提出了一种根据全局最好值的变化而自适应变化的随机惯性权重的方法。通过对5个典型的Benchmark函数的测试,结果表明此方法在收敛速度和全局收敛性方面都较线性递减的惯性权重的方法有所改进。最后,将改进的PSO算法应用于分类问题,与标准PSO算法与C4.5的结果相比,分类精度和速度都有所提高。