论文部分内容阅读
主要证明了如下的结果:假设M是有限群G的任意极大子群,则下列命题是等价的:(1)G是超可解群;(2)M补于G的某个素数阶主因子;(3)有H(△)G使M∩H为H的正规的极大子群;(4)M/MG为幂指数整除p-1的Abel群且|G∶M|为素数p的幂;(在下面的(5)~(8)中假设G之所有含于F(G)和Φ(G)之间的主因子在G中的中心化子之交是可解群.)(5)Φ(G)=H0<H1<…<Hr=F(G)为G的一个主列片段,其中每个主因子Hi+1/Hi是素数阶的;(6)若F(G)≤(△\)M,则M补于G的素数阶主因子