论文部分内容阅读
为提高手势识别中特征获取的有效性,本文提出空域特征与对偶树复小波变换特征相结合的融合特征,主要包括水平位置、竖直位置、长宽比、矩形度、Hu矩7个分量,及11维空域特征与对偶树复小波变换的16维特征进行融合后得到的27维特征。针对分类器优化算法,提出进行训练样本优选的最优距离–支持向量机(BD-SVM)分类方法。最后的实验结果表明,对"1~9"手势进行测试,当采用径向基核函数时,平均识别精度最高,为90.33%,平均识别时间为0.026 s,说明所提出的方法能够较好地进行静态手势识别,具有较高的训练速