论文部分内容阅读
高维数据集合的最近邻查询性能会受到"维数灾难"(curse of dimensionality)现象的影响。提出了一种基于联合聚类的HC2(hypercube on co-clustering)高维索引结构。首先通过联合聚类算法同时降低数据尺寸和维数,将高维数据集合聚成若干较低维数的类,然后采用超立方体结构对每个类进行空间区域描述。在基于"过滤-精炼"(filter and refine)的查询过程中,计算查询点与各个类之间的距离下界,实现对聚类的有效过滤。为了提高距离下界对真实距离的逼近能力,采用