论文部分内容阅读
为构建更精准的股票价格预测模型,提出具有局部信息挖掘功能的DNN加权算法对eplion-TSVR模型进行改进,并对改进模型的求解进行推导,针对DNN算法对于参数的选取太过随意,提出使用网格搜索法确定DNN的最优参数以确定最优DR域。搜集中国上证A股中的15支股票的日价格和高频5分钟价格数据并计算其技术指标,对20天以及20分钟后的收盘价进行实证预测。预测结果显示,改进模型在高频股票数据上具有很好的预测能力和泛化性能。