论文部分内容阅读
提出了一种基于蚁群聚类算法的径向基神经网络.利用蚁群算法的并行寻优特征和挥发系数方法的自适应更改信息量的能力,并以球面聚类的方式确定了径向基神经网络中基函数的位置,同时通过比较隐层神经元的相似性、合并相似性较为接近的2个神经元来约简隐含层的神经元,以达到简化径向基神经网络结构的目的.实验比较了几种不同聚类算法的径向基神经网络,结果表明,所提神经网络的整体训练时间至少可缩短40%,学习的准确率可提高1%以上,而且网络结构更加精简.