论文部分内容阅读
RBF神经网络构造的关键问题是中心的选取,动态K-均值聚类算法采用调整聚类中心的方法,使网络中心的选择更精确。本文先简介了RBF神经网络的结构原理,然后将动态K-均值算法应用于BRF神经网络的中心选取,最后进行了仿真实验。实验结果表明采用动态K-均值算法确定中心的RBF神经网络逼近性能更好,具有较强的实用性。