太赫兹波段的taper型多模干涉耦合器

来源 :光学仪器 | 被引量 : 0次 | 上传用户:nixiangtama
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着通信技术的飞速发展,传统微电子行业出现瓶颈,人们更多地寄希望于集成光路来实现新的突破。硅基光子学因其自身材料以及制造工艺等方面的优点而备受关注。其中,硅基耦合器作为重要的硅基无源器件,是实现光的片上合束和分束的关键。多模干涉(multimode interference, MMI)耦合器具有损耗低,工艺容差性大且带宽较大等优点,是一种常用的集成光学器件。从MMI耦合器的自映像成像原理出发,利用导模传输分析法(guide-mode propagation analysis, G-MPA)对MMI中的模场分布情况进行分析,成功设计出基于470 μm高阻硅晶圆的太赫兹波段的taper型多模干涉耦合器。通过时域有限差分法(finite difference time domain method, FDTD)仿真优化其参数,实现了93.8%的耦合效率。“,”With the rapid development of communication technology, the bottleneck appears in the traditional microelectronics industry. More and more people hope that integrated optical circuit can achieve new breakthroughs. Silicon photonics has attracted much attention because of its advantages in materials and manufacturing technology. Among them, the silicon coupler, as an important silicon passive device, is the key to achieve beam coupling and beam splitting on chip. Multimode interference (MMI) couplers are commonly used as integrated optical devices because of their advantages such as low loss, large process tolerance and large bandwidth. In this paper, based on the self-imaging principle of MMI, guided mode propagation analysis (G-MPA) is used to analyze the mode field distribution in MMI, and a taper multimode interference coupler based on 470 μm high resistance silicon wafer in terahertz band is successfully designed. The coupling efficiency of 93.8% is achieved by FDTD simulation and optimization of its parameters.
其他文献
针对旋转式惯导系统导航误差随时间发散的问题,提出了一种等效惯性器件误差计算和补偿方法.该方法基于惯性导航系统误差模型和惯性导航等效误差特性,分析导航经纬度误差的直流分量、地球振荡项和时间发散项,计算主要等效惯性器件误差.经过等效惯性器件误差补偿后,经度误差发散被抑制,纬度误差的振荡幅值由0.4\'减小到约0.15\',导航精度提高了62.5%.实验结果表明,利用该方法在导航系统中补偿等效惯性器件误差,可以抑制经度误差发散,减小纬度误差直流分量和地球振荡幅值,提高惯性导航精度.
薄膜晶体管-液晶显示行业(TFT-LCD)高精细产品需求越来越多,尤其当8.5代及以上大世代线生产手机等小尺寸产品时,彩膜曝光机的曝光均一性及叠层(Overlay)精度难以保证的问题突出,影响大世代线高精细产品的开发及生产.通过对彩膜曝光机自动补偿功能的研究,发现使用曝光机的间距(Gap)自动补偿,将差值自动补正到每个区域(Shot)中,使每个区域曝光间距更接近实际间距,使区域间间距差异变小,可以保证曝光均一性;另外,通过使用曝光机的新型光路自动补偿系统,根据每枚基板整体形变和黑矩阵(BM)工艺的区域形变
针对当前基于卡尔曼滤波的惯导系统误差阻尼技术依赖对地速度问题,提出一种基于自适应延迟状态滤波的惯导系统水平阻尼方法.该方法通过引入延迟状态的方式,使量测方程中不包含对地速度,并结合量测噪声自适应理论和延迟状态滤波理论来增进可靠性,适用于仅能获取对水速度条件下的船载惯导系统误差阻尼进程.仿真实验结果表明,水速对惯导水平阻尼的影响降低了90%以上.提出的方法能够利用对水速度实现系统误差的有效阻尼.
光开关是集成光路上一个重要的元器件。提出了一种用在L和C波段基于硫系相变材料(Ge2Sb2Se4Te1)的片上2×2定向耦合器式的可重构光开关,可通过改变相态切换开关。利用仿真软件Lumerical中的Mode Solutions和FDTD Solutions模块设计器件,得到在1500~1625 nm内耦合长度为24.9 μm的Ge2Sb2Se4Te1非晶态下插入损耗(IL)>−0.36 dB,串口对比度(CT)<−24 dB;Ge2Sb2Se4Te1晶态下IL>−0.44 dB,CT<−30.46 d
为了应对未来复杂战场环境中对定位、导航和授时(Positioning,Navigation and Timing,PNT)的需求,构建更加可靠的PNT能力,我国正在大力推进建设以第三代北斗全球卫星导航系统为核心的国家综合PNT体系,其中水下PNT体系是其重要组成部分.由于水下无法接收到卫星信号,这就要求尽可能地使用更高精度的惯性导航系统(Inertial Navigation System,INS),而原子陀螺具有极高的理论精度,为构建极高精度的INS提供了可能.从水下PNT体系建设需求出发,综述了原子陀
结合典型耐温光缆的结构设计,基于国产化高强聚酰亚胺(PI)纤维等作为承力材料,采用Abaqus结构力学仿真分析软件,建立该类光缆的有限元分析模型,并针对单一拉伸、单一温度因素和高低温-拉伸综合工况进行仿真研究,分析受力过程中其各组成材料所分担的应力情况以及各部分材料的应变情况.为设计人员提供参考,提高其设计能力和设计准确性.
采用层叠法制备了一种大芯径线面转换石英光纤传像束.先用预制棒拉制出单丝直径为98.6μm、纤芯直径为75.5 μm的石英光纤,再用层叠法制备输入端为1×500、输出端为10×50的方形排列的线面转换传像束.搭建了相应的实验测试平台,对该光纤传像束排列规则度、暗丝率和数值孔径指标进行了测试.测试结果表明,传像束错位率为1.74%,暗丝率为1.6%,数值孔径为0.219.该定位误差低、暗丝率低、数值孔径较高的石英光纤传像束的实验制备,对线面转换传像束的制备与应用具有重要的意义.
基于光纤传输机理和弯曲特性要求,设计不同折射率剖面结构的光纤,讨论了汽相轴向沉积法(VAD)工艺对光纤折射率剖面的影响及其折射率剖面与光纤参数之间的关系.采用全合成法研制的细径光纤裸纤直径典型值80 μm,涂层直径典型值165 μm,具有良好的弯曲性能和稳定可靠的机械性能,适用于不同的应用场景.其中,光学凹陷层优化的细径光纤与传统G.652D光纤的传输性能相当,可实现光缆的轻质化、小型化,满足密集通信网络建设的发展需求;具有深沟层折射率剖面的细径光纤具有良好的弯曲性能,与G.657B3光纤性能相当,进一步
近年来城市高压电网输电线路电缆化趋势明显,随着人们安全意识的增长,高压电缆的阻燃性能愈发重要.对于典型的高压电缆结构,防蚀层涂覆沥青及外护套材料的选型成为电缆能否通过燃烧试验的关键因素.通过防蚀层正常涂覆沥青与不涂覆沥青电缆试样的燃烧试验对比发现,防蚀层采用普通热涂覆沥青时,选用合适的阻燃外护套材料(阻燃聚氯乙烯、阻燃聚乙烯),电缆可以满足阻燃C类以及阻燃A类的要求.
针对非常规结构光纤复合架空地线(OPGW)(即中心丝、内层边绞丝、外层边绞丝外径不同的OPGW)在绞合中出现诸如不锈钢光单元暴股、外层单丝间隙偏大、外层绞合外观不良等问题,对绞合生产过程展开探讨,制定详细的工艺控制方案.通过对绞合节距、光单元管径、铝包钢单丝外径、绞线盘放线张力等进行管控,最终有效地解决了以上问题,提高了非常规结构OPGW绞合一次合格率.