论文部分内容阅读
将小波分析与传统的BP神经网络模型进行组合,提出了一种新的径流中长期预测方法。该方法对年径流序列进行Mallat小波分解,将分解后得到的不同尺度下的低频成分和高频成分分别进行Mallat算法重构,对重构系列采用BP神经网络模型进行预测。采用黄河三门峡站1470—2002年的年径流资料进行模型的预测和检验,并与传统的BP神经网络模型进行比较,研究结果表明小波神经网络在径流预测中具有较好的预报精度,可以成功地用于径流模拟和预测。