论文部分内容阅读
针对SOM算法中欧氏距离无法根据特征的重要性来衡量相似度、易引入无关特征干扰的缺点,提出了一种基于基因表达谱特征分布的SOM聚类算法。算法通过衡量特征对同类基因的凝聚能力和对异类基因的区分能力,对不同的特征赋予不同的权值,将此权值引入到基因数据与神经元的相似度计算中,并利用改进的粒子群优化算法调整获胜神经元及邻接神经元的权值。实验结果表明,该算法有效增强了聚类结果的类内凝聚度和类间区分度,提高了聚类准确率。