超冷单原子分子阵列

来源 :物理 | 被引量 : 0次 | 上传用户:darkcome
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
用光镊形成光阱囚禁单个原子、用激光将单个原子冷却到基态形成超冷原子、将超冷原子相干合成单个超冷分子、将单原子分子重排串成丰富多样的超冷单原子分子阵列,这就构成了精密相干可控的多粒子量子系统,为多种前沿科学研究与技术发展提供难得的量子平台.文章介绍近年来在单原子量子态高保真操控、异核原子量子纠缠、原子一分子耦合态相干控制、单个超冷分子的相干合成、异核原子阵列确定性制备等方面所取得的最新研究结果;对未来在多体物理、超冷化学、精密测量、量子模拟、量子计算等方面的发展前景进行了展望.
其他文献
为了研究杂环戊二烯作为π-桥对锌卟啉染料光电性能的影响,在染料YD2-o-C8的基础上,通过引入含有不同杂原子的杂环戊二烯作为π-桥设计了6种新型锌卟啉染料.采用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)方法对染料的前线分子轨道、吸收光谱和电子-空穴分离特性进行研究.结果 表明,与染料YD2-o-C8相比,杂环戊二烯的引入可以提升卟啉染料的光电性能,且改变杂原子可以调控卟啉染料的光电性能.对杂环戊二烯性质与卟啉染料光电性能的相关性研究发现,杂环戊二烯的最低空轨道能级与卟啉染料光电性能之间具有
锂硫电池因其超高的理论能量密度以及硫资源丰富、成本低廉、无毒的优点,被认为是极具发展潜力与应用前景的新一代储能设备.然而,硫正极导电性差、体积膨胀以及穿梭效应严重等问题严重制约了其商业化应用.石墨烯具有高比表面积、高导电性和高柔韧性,并且易于进行表面化学修饰及组装,是一种理想的硫载体材料.本文主要综述了近年来三维石墨烯、表面化学修饰的石墨烯、石墨烯基复合材料以及石墨烯基柔性材料在锂硫电池正极中的研究现状,并展望了石墨烯作为硫载体在锂硫电池正极中的发展趋势.
针对单张RGB-D图像进行六自由度目标位姿估计难以充分利用颜色信息与深度信息的问题,提出了一种基于多种网络(金字塔池化网络和PointNet++网络结合特征融合网络)构成的深度学习网络框架.方法用于估计在高度杂乱场景下一组已知对象的六自由度位姿.首先对RGB图像进行语义识别,将每一个已知类别的对象掩膜应用到深度图中,按照掩膜的边界框完成对彩色图与深度图进行语义分割;其次,在获取到的点云数据中采用FPS算法获取关键点,映射到彩色图像与深度图像中进行关键点特征提取,将RGB-D图像中的颜色信息与深度信息视为异
石墨烯薄膜是一种以石墨烯纳米片为基元结构的宏观体,通过合理的结构设计和表面修饰使其具有优异的电学、力学和热学性能,将在电化学储能、电子器件、健康和环保等领域具有潜在的应用.本文主要综述了从石墨烯基元调控到二维宏观膜组装以及石墨烯薄膜在超级电容器应用中的研究进展.主要介绍了石墨烯薄膜的简易制备方法,并详细介绍了通过对石墨烯基元的结构调控和表面修饰来优化石墨烯薄膜电化学性能的两大策略,最后对石墨烯薄膜应用所面临的挑战和未来的发展进行了总结与展望.
针对共源二倍频器匹配电路版图面积较大和传统共基二倍频器变频增益低的问题,本文提出一种二次谐波短路的共基二倍频器电路.共基结构和共源结构相比输出电容较小使得匹配电路尺寸较小,同时在输入端引入二次谐波短路电路,有效提升了共基二倍频器的变频增益.该二倍频器由Push-push二倍频器电路和驱动放大器构成,其中前者用来产生二倍频信号,后者用来对二倍频信号进行放大输出以便驱动二倍频器的后一级电路.基于对晶体管偏置与二次谐波输出功率关系的研究,将晶体管偏置在AB类提升了输出功率和变频增益.输入端共模点接地减小了输入匹
冷原子体系的量子波动性、宏观量子相干性和人工可调控性,使其成为了一个全新的量子体系,其新颖的量子态和奇异物性的研究是国际上具有前瞻性和挑战性的前沿领域.自1995年实现稀薄气体玻色一爱因斯坦凝聚以来,从单组分、简单相互作用的研究逐渐过渡到多组分、复杂多体效应以及自旋一轨道耦合、非厄米、强关联、无序效应等新物理的研究.文章介绍了近几年冷原子方面的研究进展,包括冷原子的相关技术,冷原子在量子精密测量、量子模拟和量子计算方面的重要工作,期望给未来的研究以新启迪.
石墨烯纤维是一种由石墨烯片层紧密有序排列而成的一维宏观组装材料.通过合理的结构设计和可控制备,石墨烯纤维能够将石墨烯在微观尺度的优异性能有效传递至宏观尺度,展现出优异的力学、电学、热学等性能,从而应用于功能织物、传感、能源等领域.目前,石墨烯纤维主要通过湿法纺丝、限域水热组装等方法制备得到,其性能可以通过对材料体系和制备工艺的优化而进一步提升.本文首先介绍了石墨烯纤维的制备方法,然后详细阐述了石墨烯纤维的性能,讨论了其性能提升策略,并总结了石墨烯纤维的应用,最后对石墨烯纤维的未来发展、挑战和前景进行了展望
石墨烯纤维材料是以石墨烯为主要结构基元沿某一特定方向组装而成或由石墨烯包覆纤维状基元形成的宏观一维材料.根据组成基元的不同可将石墨烯纤维材料分为石墨烯纤维和石墨烯包覆复合纤维.石墨烯纤维材料在一维方向上充分发挥了石墨烯高强度、高导电、高导热等特点,在智能纤维与织物、柔性储能器件、便携式电子器件等领域具有广阔的应用前景.随着化学气相沉积(Chemical Vapor Deposition,CVD)制备石墨烯薄膜技术的发展,CVD技术也逐渐应用于石墨烯纤维材料的制备.利用CVD法制备石墨烯纤维可避免传统纺丝工
钾在石墨中嵌入电位较低,因此石墨负极可使钾离子电池具有较高的能量密度,是一种理想的钾离子电池负极材料.然而,石墨嵌钾后的体积膨胀率高达60%,导致钾离子电池的循环稳定性较差.此外,钾嵌入石墨层间的动力学过程缓慢,制约了钾离子电池倍率性能的提升.在本工作中,我们用还原氧化石墨烯(rGO)包覆剥离石墨(EG),得到一种具有协同效应的层状复合材料.一方面,以少层的EG代替石墨可以减少由于钾的嵌入/脱嵌所引起的体积膨胀和内部应力;另一方面,外层rGO可以避免EG的堆叠,这有利于加速动力学过程并在钾化/去钾化过程中
利用电催化技术将CO2转化为小分子燃料或高值化学品是实现原子经济、构建人工碳循环的绿色能源技术之一.电催化还原CO2 (ECR)的反应条件温和、产物多样(C1、C2和C2+),有极大的发展潜力.然而,ECR技术面临一些需要解决的挑战性问题,包括电极过电势高、C2及C2+产物选择性低、伴随析氢反应等.解决这些问题的关键在于创制低成本、高性能电催化剂.近年来,石墨烯基电催化剂的研究成为ECR领域的热点之一,原因包括:1)在电化学环境中稳定性好;2)表面原子、电子结构可调,进而实现材料催化活性的调控;3)维度可