论文部分内容阅读
为克服粒子群优化算法(Particle Swarm Optimization,PSO)存在的缺陷,提出基于Logistic映射的自适应变尺度混沌粒子群优化算法(Adaptive Chaos PSO,ACPSO)。采用混沌方法对粒子进行初始化;根据不同状态下粒子适应值的大小对惯性权重采取不同的调整方法;异步变化的学习因子使粒子随着迭代步数的增加,避免粒子发生早熟收敛现象;当粒子陷入局部最优时,对部分较优粒子采用变尺度混沌局部优化策略。为了检验算法的有效性,将该算法与3种有代表性的算法进行比较,结果表明