论文部分内容阅读
目前一种比较流行并且可行的同化方法一集合Kalman滤波(EnKF)能够计算依赖于流的误差统计量。理论上,EnKF能够比最优插值、三维变分等更准确地计算误差统计量,能更好地融合背景场和观测场的信息。作者利用二维平流扩散方程经过10天的同化循环,比较不同观测分布的情况下EnKF和最优插值(OI)的模拟能力。理想试验结果显示,随着观测分布密度的减小,尤其是当观测的分辨率大于OI估计的相关尺度时,集合Kalman滤波的结果比最优插值有更明显的改进。