Enlarging grain sizes for efficient perovskite solar cells by methylamine chloride assisted recrysta

来源 :能源化学 | 被引量 : 0次 | 上传用户:caiaikai
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The quality of MAPbI3 film prepared by solvent engineering process highly depends on environment and antisolvent control.Here,we provided a simple methylamine chloride (MACl) solution treatment using a two-step process to enlarge the perovskite crystal grain sizes to more than 1 μm.Other than treatment on the film surface,the MACl solution diffuses into the MAPbI3 films to assist the recrystallization of small crystal at the bottom of perovskite film.The imitative contact between perovskite and substrate is formed.Meanwhile,the enlargement of grain size and ten times enhancement of crystalline reduce trap-assisted recombination of perovskite films,Thus,the significant improvement of cell efficiency of 20.89% as well as device stability is obtained with the MACl treatment.
其他文献
Laser-structuring is an effective method to promote ion diffusion and improve the performance of lithium-ion battery (LIB) electrodes.In this work,the effects of laser structuring parameters (groove pitch and depth) on the fundamental characteristics of L
Carbonate-modified metal-support interfaces allow Ru/MnCO3 catalyst to exhibit over 99% selectivity,great specific activity and long-term anti-CO poisoning stability in atmospheric CO2 methanation.As a contrast,Ru/MnO catalyst with metal-oxide interfaces
Photocatalytic production of hydrogen peroxide (H2O2) has attracted much attentions as a promising method for sustainable solar fuel.Here,we demonstrate that trace water can drastically boost high-efficiency photocatalytic production of H2O2 with a record
Recently,there has been renewed interest in interface engineering as a means to further push the perfor-mance of perovskite solar cells closer to the Schockly-Queisser limit.Herein,for the first time we employ a multi-functional 4-chlorobenzoic acid to pr
Exploring highly foldable batteries with no safety hazard is a crucial task for the realization of portable,wearable,and implantable electric devices.Given these concerns,developing solid-state batteries is one of the most promising routes to achieve this
Tantalum nitride (Ta3N6) is a very promising photoanode material due to its narrow band gap (2.1 eV)and suitable band alignment for solar water splitting.However,it suffers from severe photocorrosion during water oxidation.In this work,it was found that s
Photodeposition is widely adopted for implanting metal/metal oxide cocatalysts on semiconductors.However,it is prerequisite that the photon energy should be sufficient to excite the host semiconductor.Here,we report a lower-energy irradiation powered depo
Molybdenum sulfide (MoS2) with well-designed porous structure has the potential to be great electrode materials in sodium-ion batteries due to its high theoretical capacity and abundant resource,however,hindered by its intrinsic low conductivity and stabi
Photoelectrochemical (PEC) water-splitting using solar energy holds great promise for the renewable energy future,and a key challenge in the development of industry viable PEC devices is the unavailability of high-efficient photoanodes.Herein,we designed
Poly(ethylene oxide) (PEO) and its derivatives based gel polymer electrolytes (GPEs) are severely limited in advanced and safe lithium-ion batteries (LIBs) owing to the intrinsically high flammability of liquid electrolytes and PEO.Directly adding flame r