论文部分内容阅读
In order that the mechanism designed meets the requirements of kinematics with optimal dynamics behaviors, a quadratic optimization method is proposed based on the different characteristics of kinematic and dynamic optimization. This method includes two steps of optimization, that is, kinematic and dynamic optimization. Meanwhile, it uses the results of the kinematic optimization as the constraint equations of dynamic optimization. This method is used in the parameters optimization of transplanting mechanism with elliptic planetary gears of high-speed rice seedling transplanter with remarkable significance. The parameters spectrum, which meets to the kinematic requirements, is obtained through visualized human-computer interactions in the kinematics optimization, and the optimal parameters are obtained based on improved genetic algorithm in dynamic optimization. In the dynamic optimization, the objective function is chosen as the optimal dynamic behavior and the constraint equations are from the results of the kinematic optimization. This method is suitable for multi-objective optimization when both the kinematic and dynamic performances act as objective functions.
In order that the mechanism designed meets the requirements of kinematics and optimal dynamics behaviors, a quadratic optimization method is meets based on the different characteristics of kinematic and dynamic optimization. This method includes two steps of optimization, that is, kinematic and dynamic optimization. , it uses the results of the kinematic optimization as the constraint equations of dynamic optimization. This method is used in the parameters optimization of transplanting mechanism with elliptic planetary gears of high-speed rice seedling transplanter with remarkable significance. The parameters spectrum, which meets to the kinematic requirements, is obtained through visualized human-computer interactions in the kinematics optimization, and the optimal parameters are obtained based on improved genetic algorithm in dynamic optimization. the objective function is chosen as the optimal dynamic behavior and the constraint equations ar e from the results of the kinematic optimization. This method is suitable for multi-objective optimization when both the kinematic and dynamic performances act as objective functions.