论文部分内容阅读
针对智能交通系统中运动目标检测阶段存在的不足,提出了一种基于自适应混合高斯模型(GMM)的改进算法。将隔帧差分的方法引入背景建模的初始判别阶段,从而迅速地检测出运动变化区域,提高了算法的灵敏度,同时也增强了对缓慢运行车辆的检测的适用性;将划分出的背景及运动区域赋予不同的更新率,使得背景显露区域得到迅速恢复,消去了运动车辆留下的"影子"。在此较为精确的背景模型下,结合灰度和canny边缘特征进行背景差分,有效地保留了与背景灰度相似的运动目标的轮廓。通过实验证明该检测算法取得了较好的效果。