论文部分内容阅读
浅拱采用竖向、转动方向弹性约束时,自振频率和模态与理想的铰支/固结边界存在差异,不同约束刚度将改变外激励下的非线性响应及各种分岔产生的参数域.由浅拱基本假定建立无量纲动力学方程,采用在频率和模态中考虑约束刚度大小的方法,通过Galerkin全离散和多尺度摄动分析导出极坐标、直角坐标形式的平均方程,其中方程系数与约束刚度一一对应.用数值方法分析了周期激励下竖向弹性约束系统最低两阶模态之间1:2内共振时的动力行为,所得结果与有限元的对比以及平均方程系数的收敛性证明了所采用方法是可行的.随着激励幅值、频率的变化