论文部分内容阅读
利用自编码网络(autoencodernetwork,AN)流形学习和稀疏表示(sparserepresentation,SR)方法对汽车变速箱油进行近红外光谱品种识别研究。以壳牌、美孚、嘉实多、上海大众和上海通用五种变速箱油为对象,利用AN方法对600-1800nm近红外光谱数据进行非线性降维,获取10个特征变量。每种变速箱油选取30个样本(共150个样本)作为训练样本,每种30个样本(共150个样本)作为测试样本。所有训练样本的特征变量组成了稀疏表示方法的整体训练样本矩阵,将变速箱油品种分类识别问题转