论文部分内容阅读
立交桥结构的自动识别对道路网多尺度建模、空间分析和车辆导航具有重要意义。传统基于矢量数据的立交桥识别方法过分依赖人工设计的特征,对复杂场景的适应性较差。本文提出了一种基于目标检测Faster R-CNN神经网络模型的立交桥识别方法,该方法利用卷积神经网络学习立交桥样本的深层次结构特征,进而实现立交桥的自动识别与准确定位。试验结果表明,该方法对立交桥的识别效果较好,能够在复杂的道路网中准确确定立交桥的位置,避免了人为干预对试验结果不确定性的影响,抗干扰性较强。