论文部分内容阅读
在基于传感器网络的参数估计中,如何尽可能降低网络的使用成本,同时又能获得较好的参数估计性能,是近年来受到国内外学者广泛关注的一个研究问题。为了减小网络的能量消耗和节省带宽、存储资源,考虑将传感器网络中每个节点的测量值压缩成1比特数据,然后将其传输到中心节点进行集中处理,并在此基础上提出了一种基于期望最大和递归最小二乘的自适应参数估计算法。论文通过一系列MATLAB仿真实验,验证了该算法具有较好的收敛性和鲁棒性,并能获得与使用非量化测量值的经典RLS算法相近的估计精度。