论文部分内容阅读
张量投票算法是感知聚类方法中一种比较常用的计算方法,可以应用到图像处理等各个方面,具有较强的鲁棒性,非迭代等特性。张量投票算法中尺度参数的自适应选取对于投票域的建立起着至关重要的作用。通过分形维数来选取尺度参数,建立了尺度参数与分形维数的关系,提出了基于分形维数的自适应张量投票算法,并将该方法应用于图像的线特征提取和边缘修复。与传统的张量投票算法进行比较,该方法在图像线特征提取和边缘修复方面获得了较好的实验结果。