论文部分内容阅读
针对基于传统机器学习方法设计的DR胸片肺结核检测器存在着泛化能力不强,实际检测精度低等问题,提出了一种基于Focal Loss的深度学习检测方法Tuberculosis Neural Net(TBNN).医学图像的特殊性,存在带标注的数据量小导致无法充分训练深层网络模型等问题.该方法利用肺炎和肺结核同为呼吸道感染疾病且在DR胸片上有相似表征的特点,基于迁移学习原理训练特征提取子网络,减少肺结核胸片样本不足对模型训练造成的影响.首先在大型的肺炎胸片数据集上训练特征提取网络,以获取DR图像中丰富的深层图