论文部分内容阅读
为克服粒子群优化算法容易陷入局部最优解的问题,提出一种带极值抖动的变尺度粒子群优化算法,该算法在粒子进化过程中动态调整学习因子,改善粒子的搜索性能,利用极值抖动方法帮助粒子逃离局部最优解,采用变尺度方法逐步缩小算法的优化范围,提高算法搜索密度。实验表明,该算法对9个具有代表性的基准测试函数,其优化效率及优化精度均优于以往提出的典型粒子群优化改进算法。