基于混菌矿化增强粗骨料的再生混凝土裂缝自修复性能

来源 :硅酸盐通报 | 被引量 : 0次 | 上传用户:owenzikao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
微生物矿化(MICP)能够有效实现混凝土的裂缝自修复,但水泥水化和高碱环境会对微生物生存产生不利影响,因此需要选择一种合适载体.再生粗骨料可作为微生物的良好载体以制备裂缝自修复混凝土,同时MICP可以有效地修复再生粗骨料缺陷并增强其物理力学性能.本文提出一种基于混菌矿化增强粗骨料的裂缝自修复再生混凝土制备方法,确保其既有足够的力学性能又具备良好的裂缝自修复性能.首先筛选一种矿化效率较高的好氧嗜碱混菌,然后采用混菌矿化增强后的再生骨料制备再生混凝土,并考察其裂缝自修复能力.试验结果表明:混菌矿化能够显著增强再生骨料物理力学性能,经混菌矿化增强5d后的再生骨料可以有效地固载混菌;基于混菌矿化的再生混凝土呈现出比纯菌更优异的裂缝自修复能力;采用再生骨料为混菌载体的混凝土裂缝自修复能力优于以陶粒固载混菌的混凝土,其最大完全修复裂缝宽度达0.47 mm.该成果可为建筑垃圾资源化利用和再生混凝土耐久性能研究提供参考.
其他文献
本试验研究了超细高活性矿物掺合料(超细掺合料)与硅灰以单掺、复掺的方式制备超高性能混凝土(UHPC),分析了复掺不同掺量超细掺合料对UHPC的工作性、力学性能、水化热和收缩性能的影响.结果表明:UHPC流动性随超细掺合料掺量的增加而增加,跳桌流动度最高为275 mm;将超细掺合料与质量分数为10%的硅灰以复掺的方式制备UHPC时,随超细掺合料掺量的增加,UHPC抗折强度先增加后降低,抗压强度先增加后趋于平稳,最大抗折强度和抗压强度分别为25.9 MPa和150.0 MPa;超细掺合料与质量分数为10%的硅
为了研究沥青路面再生骨料(RAP)掺量对RAP自密实混凝土(SCC)力学性能的影响,采用单轴压缩方法研究RAP掺量为0%、30%、60%、90%和100%(质量分数)的自密实混凝土的应力-应变关系和韧性指数.基于应变等价假说和统计损伤理论建立单轴压缩本构关系模型,探讨了RAP掺量与损伤变量和损伤速率之间的关系.结果表明,随着RAP掺量的增加,试件峰值应力和弹性模量下降,峰值应变和韧性指数增加,所建立的损伤本构关系可以较好地描述不同RAP掺量下自密实混凝土的应力-应变关系.在应变小于0.002时,掺入RAP
自来水厂污泥是水处理后的副产物,是一种重要的固体废弃物.本文研究了机械力活化后的自来水厂污泥超细粉(WTSP)对再生混凝土(RC)力学性能和微观结构的影响.研究结果表明,WTSP的掺入使RC早期力学性能略有降低,但后期力学性能有所提高,其中含20%(质量分数,下同)WTSP试样60 d的抗压强度和弹性模量较基准组分别提高了13%和9%.在RC中掺入10%和20%WTSP后,试样中有害孔(>100 nm)数量分别减少了37.5%和54.6%,其微观结构得到明显改善.纳米压痕分析显示,掺入20%WTSP后,R
通过测试不同盐冻循环次数后超硫水泥混凝土的表面剥落质量和超声波相对动弹性模量,并对气泡结构参数进行表征,系统探究了引气剂对超硫水泥混凝土抗盐冻性能的影响规律,以及弱碱性激发剂——乳酸钠对超硫水泥混凝土抗盐冻性能的提升效果.研究结果表明,添加引气剂可有效提高超硫水泥混凝土抗盐冻性能,但会降低强度,复合掺加乳酸钠可避免强度降低.加入胶凝材料质量0.3%的引气剂,剥落质量仅为919.7 g/m2,较基准组降低了36.8%,且超声波相对动弹性模量未明显降低.引气剂的加入,改善了超硫水泥混凝土的气孔结构,降低了内部
制备一种低成本、环保型焚烧垃圾渣超高性能混凝土(UHPC).根据修正后的Andreasen and Andersen模型进行配合比设计,将处理后焚烧垃圾渣替代河砂,制备不同替换率超高性能混凝土,并对其进行工作性能、力学性能、孔隙特征、水化过程、微观特征以及毒性固结性能测试.结果表明,随着垃圾渣的加入,UHPC的工作性能和抗压强度有所下降,但流动性不低于240 mm,抗压强度不低于117 MPa,累计孔隙含量增加,孔隙大部分分布在<20 nm无害孔范围内,混凝土界面过渡区裂缝增多,混凝土中锌(Zn)、铅(P
以珍珠岩尾矿、粒化高炉矿渣微粉、水玻璃为原材料研制无熟料免烧陶粒.以水玻璃作为激发剂,探究其模数和掺量对矿渣微粉强度的影响,研究矿渣微粉与珍珠岩尾矿粉复合对陶粒筒压强度和堆积密度的影响.结果表明:当矿渣微粉、水玻璃质量比为90:10,水玻璃最佳模数为1.06,矿渣微粉、珍珠岩尾矿质量比为90:10时,可以使陶粒标养28 d达到筒压强度为7.50 MPa,密度等级为900 kg/m3,孔隙率为31.84%,软化系数为0.92,含泥量为2.25%,煮沸质量损失为2.84%;对陶粒表面进行防水处理后,吸水率由1
为了更好地实现对重金属污泥的资源化利用,研究了高温无害化处理重金属污泥与建筑渣土混合渣料磨细粉对硅酸盐水泥基材料工作性、力学性能、早期收缩变形、抗氯离子渗透性能及重金属浸出的影响及机理.研究结果表明,随着磨细粉掺量的增加,硅酸盐水泥基材料的工作性没有降低,但其力学性能均有一定程度下降,这说明磨细粉与硅酸盐水泥的需水比相差不大,但其掺量越大水泥基材料中水泥的量越低,其强度均会有一定程度下降.磨细粉不会引起硅酸盐水泥基材料的体积安定性问题,可以提高早期抗裂性,但会降低其抗氯离子渗透性能.含磨细粉试件中重金属的
通过筛分和破碎两种方式分别获得粒径区间为0.6~1.18 mm、0.3~0.6 mm的粉煤灰渣,并用其等体积替代对应粒径区间的细骨料,分析粉煤灰渣对砂浆工作性和强度的影响,探究粉煤灰渣的最优替代粒径区间.结合扫描电镜(SEM)、能谱分析(EDS)等方法分析了粉煤灰渣替代细骨料后砂浆试件的强度变化机理.基于砂浆最优替代粒径区间结果,验证了砂浆混凝土试件的强度和抗冻性.研究结果表明:分别以筛分方式和破碎方式得到的0.3~0.6 mm粒径区间粉煤灰渣替代对应区间细骨料后,其砂浆试件强度均与基准组(未替代)基本一
煤气化渣可分为粗渣和细渣,其有在碱激发领域应用的潜力.本文对煤气化粗渣的理化性能进行了研究,使用煤气化粗渣制备了地质聚合物,并对其进行了TiO2的改性研究.结果表明,在煤气化粗渣基地质聚合物中掺入一定量的TiO2可明显改善其力学性能.当掺入质量分数为10.0%的TiO2时,样品28 d的抗压强度可从23.4 MPa提高到42.9 MPa.此外,通过对样品进行物相分析与微观结构分析,TiO2的掺入明显改善了地质聚合物的微观结构,促进了碱激发反应,提高了材料的力学性能.
为促进大宗化利用钢渣尾泥,以河北迁安的钢渣尾泥为研究对象,借助X射线衍射(XRD)、场发射扫描电镜(FE-SEM)、傅里叶红外光谱(FT-IR)、热重-差热分析(TG-DTA)测试方法,研究了钢渣尾泥在矿渣-脱硫石膏体系中的水化硬化特性.研究表明,经机械粉磨后的钢渣尾泥仍表现出较好的水硬胶凝特性,与普通钢渣-矿渣-脱硫石膏体系相比具有早期强度高的优势,其水化产物主要为钙矾石(AFt)和水化硅酸钙(C-S-H)凝胶.在水化反应过程中:钢渣尾泥为体系提供碱性环境,促使矿渣中玻璃体解离;矿渣水化不断消耗羟基,进