论文部分内容阅读
格子Boltzmann方法作为一种较成熟的数值模拟方法被广泛应用到了各个领域,尤其在解决多孔介质问题时有其独特的优越性,但当流动问题过于复杂时计算效率较低.因此本文将惯量松弛因子引入到格子Boltzmann方法中,对二维、三维顶盖驱动方腔流动进行了数值模拟.模拟分别从计算效率、计算精度、以及计算稳定性等方面将使用不同惯量松弛因子所得的结果与基准解进行比较,并进行讨论和分析.结果显示当惯量松弛因子取0.03到0.05之间时能使模拟结果在保持较高精度的同时提高计算效率,而且随着惯量松弛因子的增大计算效率提高得