论文部分内容阅读
基于粗糙集(RS)理论和支持向量回归(SVR)方法,提出一种电力系统短期负荷预测方法.采用粗糙集理论对影响负荷预测的各因素进行约简,将约简后得到的最小条件属性集,以此确定输入样本的维数并构造训练样本,作为支持向量回归机的输入进行训练预测.在此基础上,利用已知历史负荷数据构造训练样本群,作为SVR的输入进行训练,采用训练完毕后的SVR模型进行负荷预测.实验结果表明,与神经网络方法和标准SVR方法相比,集成粗糙集和支持向量回归的负荷预测方法,可以在缩短训练时间的前提下获得较高的预测精度.