【摘 要】
:
Green needle coke (GNC) was oxidized by mixing acid HNO3/H2SO4.The resulted oxidized material was named as intermediates which can be easily separated into two parts,water dispersible and water non-di
【机 构】
:
Key Laboratory for Green Chemical Technology of Ministry of Education,School of Chemical Engineering
论文部分内容阅读
Green needle coke (GNC) was oxidized by mixing acid HNO3/H2SO4.The resulted oxidized material was named as intermediates which can be easily separated into two parts,water dispersible and water non-dispersible part.These two parts were then activated by KOH respectively.The resultant two kinds of nanoporous carbons have different porous network when using the same KOH weight.XPS and XRD were used to investigate surface functional groups and microstructure of the intermediates respec-tively.The pore structures of the resultant nanoporous carbons were evaluated using N2 adsorption/desorption and TEM analysis.The relationships of intermediates surface properties and structural characteristics with porous structure of the derived carbons were figured out.In 6 M KOH electrolyte,water dispersible intermediate derived carbon sample GNC-A10-3 has superior performance as electric double layer capacitor electrode with a capacitance of 248 F g-1 at the current density of 40A g-1 and the rate performance expressed in the capacitance retention C40/0.05 is 76%.While water non-dispersible intermediate derived carbon sample GNC-R10-3 possesses larger volumetric specific capacitance than GNC-A10-3.
其他文献
以聚苯并嗯嗪为前躯体,合成了具有大孔容的珊瑚状含氮中孔炭.材料具有可连续调控的孔容积,最大孔容可达5.16 cm3g-1.这种珊瑚状炭材料是由囊泡状基本单元所构成的具有开放性孔道的连续骨架,并且在囊泡的一侧都具有开口,开口尺寸约为22 nm,基本单元之间有一定的连续性和连通性,,并且材料的比表面积主要是由2nm中孔贡献,这将有利于电解质离子接触材料表面,提高材料表面的利用率,使其可以作为更好的超级
超级电容器以其高功率密度、稳定的循环性能以及环境友好等优点成为了新一代的电化学储能装置.活性碳纤维由于拥有较高的比表面积、微小的孔径以及较好的电子导电性而成为了超级电容器理想的电极材料.本文以聚丙烯晴基预氧丝为原料采用CO2活化法制备了活性碳纤维,以6mol/L的KOH溶液作为电解液采用双电极方法对材料进行了循环伏安和恒流充放电测试,测得其比电容可以达到120 F/g.即使在100 mA/cm2的
以石墨烯/氧化锰复合材料为正极、以活性碳纤维为负极在Imol.L-1 Na2SO4溶液中组装出新型非对称超级电容器.采用循环伏安、恒流充放电、交流阻抗等电化学方法对其电化学性能进行测试.结果表明,优化后的非对称超级电容器可在1.8V的电压区间内进行可逆充放电,最大能量密度可达51.1Wh.kg-1.另外,该非对称超级电容器显示出良好的循环稳定性,经过1000次循环后容量保持率为97%.
首次以80.3%Co3O4@19.7% rGO复合材料为正极,AC为负极,6M KOH溶液为电解液组装成80.3% Co3O4@ 19.7% rGO/AC非对称超级电容器并测试其电化学性能;测试结果显示,基于80.3%Co3O4@ 19.7%rGO复合材料电极的电容器电位窗口从0.5V扩展到1.5V,容量达114.1 F·g-1,且表现出良好的电容特性和大电流放电性能.电化学性能的改善得益于以较大
采用商业超级电容器用活性炭作为活性材料,在不同的测试温度下,运用循环伏安、恒流充放电、交流阻抗等表征方法研究了新型电解质四氟硼酸螺旋双吡咯烷鎓(SBP-BF4)与四氟硼酸四乙基铵(Et4 NBF4)在碳酸丙烯酯(PC)中的电化学性能差异.结果表明,SBP-BF4在常温(25℃)、高温(60℃)以及低温(-20℃)条件下的电化学性能均优于Et4NBF4.在-20℃环境下,SBP-BF4电解液中,0.
In this paper,cuprous oxide nanosheets/graphene oxide composites (Cu2O-GO) are prepared using a simple solution approach and subsequent annealing at 400 ℃.The morphology and structure of as-prepared C
采用在空气中燃烧石油渣油的方法制备了一种类富勒烯结构的纳米碳球.进一步氮气气氛下1 000度热处理制得碳化纳米碳球.通过扫描和透射电镜确定了其微观结构.电化学测试结果表明,这两种纳米碳球都有着较高的储锂容量和循环性能,其中经进一步热处理制得的碳化纳米碳球的首次库伦效率和可逆容量更高和电压滞后较小,以及同时大电流密度下的倍率性能更为优良.如此优良的电化学性能主要归功于,此类富勒烯纳米碳球的如此小的粒
为了满足人们对高性能锂离子电池的需求,对电极材料进行结构设计和表面改性非常重要.与其它材料相比,炭材料具有许多独特的物理化学性质:如形貌可控,表面化学可调,热稳定性好,电子导电性好,环境友好,来源广泛及价格低廉等优点.基于炭材料这些独特的优势,使用新型炭负极材料或经过炭材料修饰改性的正负极材料,能够很好地解决锂离子电池正负极材料所面临的困境,从而获得优异的电化学性能.
A novel nitrogen-containing carbon has been prepared by carbonization of polyaniline which is synthesized by in situ polymerization.Lithium storage performances have been investigated by galvanostatic
本文采用聚乙烯醇与活性炭复合,制备活性炭/有机多孔材料,继而经过预氧化及炭化,得到泡沫状多孔炭材料.将其与硫进行复合,作为Li-S电池正极材料.研究表明其具有良好的电化学性能,在100 mA/g的电流密度下,首次放电比容量为1280 mAh/g.同时该电极材料具有良好的倍率性能,循环稳定性和较高的充放电性能.