准确数值界面条件浅说

来源 :中国计算力学大会2012 | 被引量 : 0次 | 上传用户:ft4200770
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  本文介绍了一系列近年来我们发展的用于交互多尺度计算的数值界面条件。从精确的时间历史积分方法出发,我们分别通过匹配微分算子、匹配色散关系、匹配核函数等手段推导出相应的数值界面条件,即速度界面条件、匹配边界条件和几乎精确边界条件。通过采用我们发展的有限差分多尺度框架、双向界面条件等技术,这些准确数值界面条件已被有效应用于双原子链(复式晶格)、平面方晶格和三角形晶格、三维面心立方和体心立方晶格等,数值算例表明,这些界面条件的运用,能够有效抑制边界上非物理的数值反射。
其他文献
本文提出了一种求解旋转周期对称结构弹性问题的比例边界有限元法。在对称适应的坐标系下,由比例边界法的参数矩阵的块循环性质,利用群变换得到了具有分块对角形式的特征值和刚度矩阵。通过将整个问题转化为一系列子问题进行分块计算,降低了比例边界法中所需求解的特征值问题和刚度矩阵方程的计算量。数值算例的计算结果显示,与常规的比例边界法相比,所提方法显著提高了计算效率。
提出了分析弹性力学问题的基于自由度缩减的局部无单元伽辽金方法。该方法采用了基于多项式的RPIM插值,并像有限元方法一样直接施加本质边界条件。函数插值可通过任意形状的子区域实现,而不是采用无网格方法中常用的影响域。将内部节点的方程转换到外部边界节点上,通过缩减自由度的方法简化了局部离散方程的弱形式。与Belytschko 等提出的标准无单元伽辽金公式相比,本文方法提高了无网格方法的计算效率。从数值算
为了消除超声热波检测中的驻波现象对检测结果的不利影响,运用数值仿真方法研究了构件在超声激励下的振动特性和声混沌现象。首先,通过建立含裂纹损伤的复合材料构件的有限元模型,研究了不同激励频率条件下构件的驻波共振模态,发现构件在超声谐波激励下的响应仍是谐波,且响应频率与激励频率相同。然后,通过改进仿真模型,分析了声混沌产生的原因和机理及其对检测结果的影响,结果表明:在相同激励频率条件下,声混沌的产生更有
针对超声红外热波检测中出现的驻波问题,提出了多模式激励方式消除驻波影响的方法。建立了含裂纹缺陷的复合材料构件有限元模型,并采用双源激励超声热波检测方法进行了检测仿真分析。结果表明多模式激励方法能够使构件的响应波形中产生更为丰富的次谐波和高次谐波,提高超声热波技术的检测能力,并且可以避免对材料造成二次损伤,对于复合材料的损伤检测具有重要意义。
在超声红外热波检测中,超声波能够激发材料内部的损伤生热,通过红外热像仪可观测到被测结构的温度变化,从而实现对被测结构的无损检测。在对裂纹处超声波激励生热机理研究的基础上,利用有限元数值计算方法,对超声波在裂纹处的生热过程进行数值分析研究,结果表明超声波能够很好地激励钢材料结构中的裂纹生热,因此可根据结构表面出现的热源点来对结构的损伤进行判断。
对于具有不确定参数车轨耦合系统,本文建立了随机轨道不平顺激励下耦合系统动力响应预测的虚拟激励摄动算法。车辆采用多刚体系统模型,其参数的不确定性以随机变量形式描述。弹性轨道视为无限长周期结构,建立哈密顿对偶坐标体系下轨道典型子结构状态运动方程。采用线性赫兹理论建立轮轨关系,得到混合坐标下车轨耦合系统运动方程。轨道不平顺视为平稳随机过程,根据虚拟激励法原理,可将其转化为虚拟简谐激励。基于虚拟激励法推导
采用Galerkin 方法对轴向运动梁非线性振动方程进行模态截断,发现,一阶模态方程只能获得近似的稳态周期解,无法揭示系统可能存在的混沌运动。保留2 阶或以上模态的离散系统不仅可以获得稳态周期解,还可近似模拟梁的混沌响应。当混沌运动存在时,截取模态数对系统的瞬态响应影响很大。即便保留高阶模态,截取不同模态数而获得混沌响应也存在很大差别。因此,Galerkin 方法用于求解轴向运动梁非线性振动周期解
提出基于局部弱式和强式配点相结合的无网格局部弱-强式法(meshfree local weak-strong form method,MLWS)分析Mindlin 中厚板弹性动力学问题.考虑一阶剪切变形Mindlin 板动力学问题MLWS 法,其广义位移形函数采用移动最小二乘(MLS)法来构造,空间离散的无网格弱-强格式直接由控制方程的局部Petrov-Galerkin 非对称弱形式并通过选择权函
与传统动力学问题不同,软物质动力学问题由于软物质的复杂本构关系而表现出许多特有性质。本文针对高分子软物质的子链Langevin 方程模型,忽略高分子链的动力学回流和排体积效应,构造广义多辛算法分析子链运动规律。首先,基于广义多辛理论,构造Langevin 方程的广义多辛形式;随后,采用显式中点差分离散方法构造广义多辛形式的广义多辛差分格式;最后,采用广义多辛格式分析“念珠”(子链)的运动规律。从数
根据Voronoi胞的几何性质,获得了积分点的二阶Voronoi胞顶点的表达式,并对各邻近结点相关的顶点进行排序以使其生成的二阶Voronoi胞切割面为凸多边形,从而获得各切割凸多边形面域的面积表达式;最后,基于复合函数链式求导法则,获得了三维自然单元法non-Sibson插值形函数导数的显式格式。相比Lasserre算法,该方法具有直观,便于编程,且计算量小的特点。悬臂梁的算例进一步验证了自然单