【摘 要】
:
采用预辐照和悬浮接枝聚合的方法制备了乙烯-醋酸乙烯共聚物接枝聚苯乙烯(EVA-g-PS)共聚物,研究了工艺条件对反应接枝率的影响。利用傅里叶红外光谱(FTIR)、拉曼光谱、核磁共振氢谱(1H NMR)以及X射线光电子能谱(XPS)对EVA和EVA-g-PS的结构进行了表征。结果表明,EVA-g-PS的FTIR谱图中在700、755、1480、1602和3060 cm-1处均出现了吸收峰;EVA-g
【机 构】
:
长春理工大学化学与环境工程学院 长春 130022 中国科学院长春应用化学研究所,高分子物理与化学
论文部分内容阅读
采用预辐照和悬浮接枝聚合的方法制备了乙烯-醋酸乙烯共聚物接枝聚苯乙烯(EVA-g-PS)共聚物,研究了工艺条件对反应接枝率的影响。利用傅里叶红外光谱(FTIR)、拉曼光谱、核磁共振氢谱(1H NMR)以及X射线光电子能谱(XPS)对EVA和EVA-g-PS的结构进行了表征。结果表明,EVA-g-PS的FTIR谱图中在700、755、1480、1602和3060 cm-1处均出现了吸收峰;EVA-g-PS的拉曼光谱在波数为1632、1150 ~1250、1060和1002 cm-1均出现了较为明显的特征峰;EVA-g-PS的1H NMR谱图在化学位移为6-8之间出现了5组峰,这些均是苯环上的H的化学位移;EVA-g-PS的XPS能谱中出现了C和0 2种元素峰强的增加,是来自于接枝的PS,这进一步证明PS与EVA接枝成功。介电分析表明随接枝率的增加,介电常数逐渐升高而介电损耗逐渐降低;对共聚物的流变性能及形貌进行了表征。
其他文献
在高分子合成化学中,高分子可控链裁剪反应是解决高分子材料的循环利用,实现资源再生和环境友好的重要途径。本课题组在研究大分子多双键体系锆氢加成反应中,发现了经典的锆氢试剂(Schwartz试剂:双环戊二烯氢氯化锆)能够对三大通用橡胶材料(1,4-聚丁二烯、丁二烯-苯乙烯共聚物和1,4-聚异戊二烯)在常温常压下快速进行可控链裁剪反应。
近年来,离子液体中在很多领域吸引着人们的注意,包括催化,合成和溶剂萃取等领域。室温离子液体的不易挥发性、强溶解能力使得其在核燃料后处理中有着潜在的应用。在核燃料后处理过程中,铀酰的萃取以及三价锕系和镧系元素的有效分离是实现先进燃料循环的关键环节。
嵌段共聚物是指将两种或两种以上性质不同的聚合物链段连在一起制备而成的一种特殊聚合物,它可以将多种聚合物的优良性质结合在一起,得到性能比较优越的功能聚合物材料。可用作热塑弹性体、共混相容剂、界面改性剂等。广泛地应用于生物医药、建筑、化工等各个领域,在理论研究和实际应用中都具有重要的意义。我们课题组应用活性自由基聚合物(ATRP聚合)合成了星形聚苯乙烯-b-丙烯酸正丁酯嵌段共聚物。系统地研究了嵌段共聚
本文综述了耐高温热固性聚酰亚胺树脂及复合材料的研究进展。热固性聚酰亚胺树脂经过几十年的发展,形成了主要以降冰片烯酸酐、苯乙炔基苯酐及乙炔基苯酐为封端的聚酰亚胺基体树脂体系。这些树脂具有优异的耐热性能、良好的加工性能和较低的加工成本。本文主要介绍了研究组近年在热固性聚酰亚胺树脂及其复合材料的应用等方面的研究。
选择催化还原(SCR)是一种能在富氧条件下有效消除NOx技术。目前,V205-W03/Ti02由于其较强的耐硫性能已在火力电厂脱硝和重型柴油机尾气净化等方面得到了较为广泛的应用。但V205 -W03/Ti02催化剂的工作温度窗口较窄,以及耐碱中毒能力较差。以稀土Ce为活性组分制备的新型稀土脱硝催化剂,不仅具有比V205-W03/Ti02催化剂更宽的工作温度窗口,还有具有非常优异的耐碱中毒能力和低毒
Cs/Sr被称为发热元素,其有效分离一直以来是国际分离科学与技术领域富有挑战性的热点和难点课题[1],超分子识别试剂及其相关材料被认为是分离Cs/Sr的有效手段[2-3].本文基于敏感有机合成技术,以多步法合成与表征了结构各异的Calix[4]arene-mono/bis-crown衍生物;以大孔 Si02-P为载体,基于独创的分子修饰与真空活化灌注与固定化技术,制备与表征了新颖大孔硅基超分子识别
将偶氮苯基团引入交联液晶高分子后,液晶网络会产生光致收缩和弯曲等显著的形变,这是偶氮苯基团发生反式(顺式的光异构引起的。由于光是一种理想的刺激源,容易在时间和空间上实现局部控制、有选择性并且允许能量的远程传递,因此,光致形变交联液晶高分子材料为实现柔性执行器在微观领域的应用提供了可能性,如全光驱动的马达、振荡器以及机器人等。但是,目前已开发的光致形变液晶高分子材料大多为紫外光响应,存在着生物体危害
利用声化学法制备的带有磁性囊壁的蛋白质微胶囊,由于具有巨大的载药能力,良好的生物相容性和可降解性,在药物传输、靶向给药及控制药物释放等方面有着巨大的应用价值。声化学法具有快速简便,高效环保,药物直接装载,产物纯净无毒等优点,这是其他制备磁性蛋白质微胶囊的方法无可比拟的。本文通过声化学法制备了具有生物相容性的磁性蛋白质微胶囊,利用高强度超声波辐照磁性Fe304改性的牛血清白蛋白纳米粒子水溶液与油相的