Private machine learning classification based on fully homomorphic encryption

来源 :中国密码学会2017年密码算法学术会议 | 被引量 : 0次 | 上传用户:yshanhong
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  With the development of cloud computing,the prediction of trend is important for managing big data.Machine learning classification is an useful tool for predicting trend accurately by analyzing big data.Because traditional public key scheme couldnt support homomorphic operations without decryption,the users data should be encrypted by fully homomorphic encryption (FHE).then they are stored and computed on the cloud server without leaking the users privacy.In this papery we propose an improved fully homomorphic encryption scheme.Gentrys relinearization technique is used to reduce the size of the ciphertext from three ring elements to two ring elements.For practical consideration if there is no homomorphic multiplication for the multiplicative ciphertext.it can be computed homomorphically without using the relinearization technique.In Bosts scheme.private hyperplane decision classification,private Na(i)ve Bayes classification and private decision tree are implemented by partial homomorphic encryption.In order to eliminate too many interactions and ciphertext transformation.we choose proposed FHE scheme.In our homomorphic comparison protocol.the number of interactions between the user and the cloud server is reduced from 3 to 1.The technique of single instruction multiple data (SIMD) is used to speed up homomorphic operations.For efficient implementation of the private decision tree classification,we calculate ciphertexts with the same depth of homomorphic multiplication by the technique of SIMD.Simulation results shows that our implementation of the private decision tree classification is more efficient than Bosts scheme and Khedrs scheme.
其他文献
采用有压给料两产品重介质旋流器(简称有压给料两产品)入选末煤时,普遍存在矸石带煤量高、次生煤泥量大,严重影响精煤产率和质量的难题,为此北京国华科技集团有限公司和淮南矿业(集团)有限责任公司选煤分公司合作研发成功2GHMC□/□AP型无压给料两段两产品重介质旋流器(简称无压给料两段两产品).作者从动力煤分选特点出发,参考无压给料三产品重介质旋流器研究经验,研制成功无压给料两段两产品.与有压给料两产品
3GHMC1500/1100A型无压给料三产品重介质旋流器是当今国内外规格和单机处理能力最大的重介质旋流器.本文介绍该设备在贺西煤矿选煤厂的工艺指标:一、二段可能偏差值分别为0.023kg/L和0.027kg/L,数量效率99.12%,灰分误差0.12%,一、二段错配物总量分别为0.71%和0.78%.
凤凰台选煤厂对引进国外加工技术和材质的不锈钢筛条筛缝为0.15mm的精煤泥弧形筛进行了工业性试验,在采用气动式击打器和单位处理为4.3t/(h·m2)的条件下,获得了多项工艺指标,其中按指定粒度为0.15mm所计算的筛分效率为82.40%,粗粒物正配效率为99.16%,细粒物正配效率为83.24%,脱泥率(<0.045mm)为92.87%,进入浮选作业的煤泥量比原有0.4mm筛缝的煤泥量减少了近一
通过对弧形筛工作原理和筛面运动状态的分析,说明弧形筛安装击打器的必要性.针对原有机械式击打器的缺点,开发了用于精煤泥弧形筛的GHQD型气动式击打器,通过林西选煤厂工业性试验说明该击打器应用于浮选入料粒度控制方面效果是良好的,提高了弧形筛的工艺指标.
近年来,侧信道分析对各类密码设备构成了严重的安全威胁。利用设备运行时产生的数据相关信息泄露,攻击者可以有效恢复出密钥,即使实现中所用的密码算法具有很好的数学性质。在目前的侧信道分析中,虽然信息泄露中包含与密码运算的中间状态相关的信息,但若无训练设备的辅助,攻击者并不能通过信息泄露来直接恢复密码运算的中间状态。为了恢复密钥,攻击者通常采用“先猜测后确定”的攻击策略,即攻击者先猜测部分密钥,根据密钥猜
会议
潘一选煤厂的浮选煤泥是一种罕见的高灰分、高泥化煤泥,本文扼要介绍了工业性分选试验结果和日常生产指标,重点对各项试验进行分析,数据表明之所以能取得满意的分选指标是各设备和工艺综合协同作用的结果.
Time--memory trade-off (TMTO) cryptanalysis is a powerful technique for practically breaking a variety of security systems in reality.There are mainly four general TMTO cryptanalysis methods,namely He
会议
杂凑函数Keccak是SHA-3竞赛的获胜算法。本报告首先简述Keccak的安全性分析现状,然后介绍报告人在Keccak分析方面的最新研究成果。报告针对Keccak杂凑函数的代数结构,提出一种线性结构的新技术,得到了目前为止Keccak杂凑函数最好的原像攻击,并首次解决了Keccak设计团队提出的3轮和4轮原像挑战。
会议
借鉴Shannon密码设计思想,本文提出了一种基于混淆和扩散的Galois型非线性反馈移位寄存器(NFSR)模型.基于该模型设计了一个面向硬件实现的具有环境适应性的序列密码Bagua,其密钥长度128比特,支持l 32拍并行实现.算法单拍实现硬件开销约3905门电路,FPGA仿真最高频率可达250MHz,吞吐速率可达8Gbps.算法能够通过NIST伪随机性检测,并抵抗目前主流的攻击方法.
Nowadays,many enterprises and personals are inclining to outsource their data to public clouds,but security and privacy are two critical problems that they cannot ignore.Not only kinds of thieves may