激光加速核诊断方法研究

来源 :第六届全国高能量密度物理会议 | 被引量 : 0次 | 上传用户:doraemon1226
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  激光加速是最近十几年发展起来的新型加速技术,激光加速离子参数的诊断对发展新技术、认识新物理至关重要.激光加速过程中伴有强电磁场、强伽马信号等,导致诊断环境极其复杂,要想获得详细的加速离子参数变得十分困难.常用的汤姆逊离子谱仪由于是靠电磁场偏转分辨离子,不可避免的要受到实验条件下强电磁场的干扰,为了提高能量分辨率,还需要提高磁场强度,谱仪尺寸就会越来越大,也给实验带来诸多不便,另一方面汤姆逊谱仪测量的立体角很小,无法给出离子的产额、空间分布等信息.RCF滤片法可以给出能谱、角分布、总产额等信息,但是RCF不可以重复使用,并且容易饱和.本文发展了一种基于铜活化法的核诊断方法,利用传统核物理的符合测量方法,测量活化铜的活度,通过一定的解谱方法,得到离子能谱,同时还可以得到离子的角分布、总产额等重要的参数信息.该方法在等离子体物理实验室的星光装置上进行了检验,成功得到了质子能谱、角分布等参数信息.
其他文献
  稠密物质中电子离子温度弛豫过程是一个重要的非平衡过程,特别是在惯性约束聚变中起到非常重要的作用。到目前为止,分子动力学被认为是一种研究温度弛豫过程的有效方法,但是
  激光等离子体在磁场中演化有很多宏观的特征已经被广泛研究,比如射流,两臂结构和RT不稳定性,与天体物理中很多现象相似。我们在实验上用磁探针诊断电磁辐射。实验结果表明有
  激光束作为驱动源己应用至高能量密度物理实验研究多年,近些年随着离子加速器技术的发展,重离子束为高能量密度物理领域开辟了一条有特色的新道路.由于重离子在物质中的
  利用辐射流体程序对30 ~180 kJ激光直接驱动内爆靶丸产生的1~100 keV能区连续谱X光的辐射特征进行了研究,发现连续谱X光辐射主要产生于停滞时刻靶丸壳层靠近热斑区的内边界
  随着超强激光-物质相互作用研究的快速发展,获得更高强度的激光成为科学家们追求的目标,而等离子体光学透镜由于其经济便捷、不易损坏、聚焦更强等优点引起了人们的广泛关
  磁化套筒惯性聚变(MagLIF)作为一种结合磁约束与惯性约束聚变两者优点的新兴聚变方式,对未来国防与科技发展均具有重要的意义。本在调研跟踪国外磁化套筒惯性聚变研究领
  在惯性约束聚变,特别是混合驱动中,为保证高度压缩靶丸和聚心冲击波形成点火热斑,在激光能量沉积处要求高程度的均匀性.然而激光束数量有限,激光焦斑强度分布不均,这些早期扰
会议
  在由激光驱动的惯性约束靶丸中,壳层材料在热斑中的混合阻碍是聚变成功点火的主要因素,它已成为相关研究的一项紧迫课题。在壳层加速压缩阶段,激光辐照的不均匀引起的扰动以
  双壳层靶主要是针对中心点火方式设计的,外壳层是烧蚀材料,内壳层由高Z材料构成,里面充满高压DT气体。这种靶构型与传统的中心点火靶(冷冻靶)相比,无需复杂的冷冻设施,高Z壳层