【摘 要】
:
In order to investigate whether adaptive observations can improve tropical cyclone (TC) intensity forecasts, observing system simulation experiments (OSSEs) were conducted for 20 TC cases originating
【机 构】
:
中国科学院大气物理研究所 中国科学院海洋研究所
【出 处】
:
中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室2013年度LASG年会
论文部分内容阅读
In order to investigate whether adaptive observations can improve tropical cyclone (TC) intensity forecasts, observing system simulation experiments (OSSEs) were conducted for 20 TC cases originating in the western North Pacific during the 2010 season according to the conditional nonlinear optimal perturbation (CNOP) sensitivity, using the fifth version of the PSU/NCAR mesoscale model (MM5) and its 3DVAR assimilation system.
其他文献
Nonlinear local Lyapunov vectors (NLLVs) are developed to indicate orthogonal directions in phase space with different perturbation growth rates.In particular, the first few NLLVs are considered to be
A discontinuous Galerkin (DG) scheme for the nonlinear unsaturated soil water equations is proposed in this paper, which satisfies a strict maximum principle.And we prove that under suitable time step
由于地形追随坐标系(σ坐标)能简化下边界条件,数值模式通常使用σ坐标的方程组构建模式动力框架.然而,在陡峭地形附近,σ坐标存在"气压梯度力"和"高层平流"两种计算误差,影响模式的效果.Li et al.(2013)提出一种正交曲线地形追随坐标系(OS坐标系)同时处理上述两种误差.
Multi-model ensemble (MME) seasonal forecasts are analyzed to evaluate numerical models performance in predicting the leading forced atmospheric circulation pattern over the extratropical Northern Hem
经典地形追随坐标系(经典σ坐标)在陡峭地形附近,存在"气压梯度力(PGF)的大项小差问题",随着模式空问分辨率不断提高,误差的影响日趋严重.为解决这种误差,Li et al.(2012)提出一种"经典σ坐标系的改进方案",即:使用经典σ坐标的协变方程组.改进方案中,PGF的计算形式,由原方案的两项变为一项,从而避免大项小差.
半个世纪前,Lorenz(1963年)发现混沌动力系统对初始条件的极端敏感性(蝴蝶效应),作出"混动系统长期预测是不可能的"这个著名论断.但该论断中的"长期"(long-term)之定义并不明确.本文提出"预测的物理极限"这个概念,该概念给出一个混动动力系统数学上可靠、 且具有物理意义的计算轨迹之最大时间尺度(0,Tmaxp).
In this study, a comprehensive assessment of the interannual predictability of the WNP summer climate has been performed using the 1-month lead retrospective forecasts (hindcasts) of five state-of-the
本文利用中国1960-2011年资料比较完整的518站逐日气温观测数据,采用非线性局部Lyapunov指数(NLLE)和非线性误差增长理论,定量分析了中国区域月时间尺度平均气温可预报性期限(MTPL)的时空分布和年代际变化特征。
The definition of the attractor radius was given and then the property of that the attractor radius (AR) in a given n-dimensional attractor A is a constant was proved in theory.
The parameters errors in numerical models are an important source of the uncertainty in the simulation and prediction of weather and climate event.However, it is costly to reduce all parameters errors