Localization system for mobile robot using scanning laser and ultrasonic measurement

来源 :2011年中国智能自动化会议 | 被引量 : 0次 | 上传用户:ailynn
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  A low-cost, installation convenient, continuously
  accurate and multi-sensor based localization system
  for a mobile robot
  was introduced. A gyroscope based dead reckoning
  system was firstly employed to provide momentary but
  real-time heading and
  position information for the robot. Then, a novel
  scanning laser and ultrasonic absolute positioning
  system was developed to
  eliminate the accumulative error in dead reckoned
  robot heading and position. The robot has a fixed
  base station where the robot can
  recharge itself. A scanning laser and an ultrasonic
  transmitter were mounted on the base station to
  measure the robots angle and
  distance relative to it. Another scanning laser was
  mounted on the robot to measure the base stations
  relative angle in the robots
  frame. The base station and the robot were wirelessly
  connected through radio frequency (R.F). This method
  was implemented on a
  lawn robot. Experimental results show that the lawn
  robot can work continuously for a long period of time
  within thirty meters away
  from the base station without losing its position.
其他文献
针对含不确定变摩擦因数的非线性磁悬浮系统设计一种模糊观测器。首先将非线性磁悬浮系统进行T-S模糊处理,利用添加辅助变量的方法放宽了Lyapunov方法设计观测器的局限性,具有较小的保守性。最后仿真结果验证了该方法的有效性。仿真结果表明:设计的观测器对磁悬浮系统在不确定摩擦因数情形下能够有效地观测位置输出变化信息。该方法对于这类含不确定参数的非线性系统具有参考价值。
核方法通过非线性映射将原始数据嵌入到高维特征空间,然后进行线性分析和处理,为基于知识的数据分析带来新的方法和模式。本文针对传统的K-均值聚类方法无法解决故障特征数据维数高、在故障样本交叠严重时多分类性能较差的问题。在电路故障特征数据预处理阶段,提出了一种类互均衡核K-均值法进行聚类,不仅克服了传统方法中分配不均或漏分问题,而且解决了特征数据维数高带来的奇异性问题,还有效提高了故障样本交叠时的多分类
In order to solve sequence constrained optimization problems, a differential evolution algorithm with mapping (MDE) is   presented. By mapping the sorting variables to random coefficient range [0,1],
在有输入输出约束和执行器故障下,研究一类不确定时滞离散系统鲁棒预测控制容错控制器的分析和设计问题。针对可能发生的执行器增益故障模式,利用线性矩阵不等式方法,给出系统在无外界扰动输入时鲁棒预测控制容错控制器存在的充分条件。当存在外界干扰时,通过引进H∞扰动衰减指标,得到约束鲁棒预测控制H∞容错控制器存在的充分条件。仿真结果表明控制器的有效性。
A composite control method is proposed based on   adaptive terminal sliding mode control and   disturbance observer theory   for a class of high-order nonlinear dynamic systems.   In this control meth
Large load swing of a gantry crane, due to cable   flexibility and rapid movement, needs to be   controlled. Herein, a   wave-based approach interprets the cable motion as   two superposed traveling w
Considering the whole impact of mechanical and   electrical system nonlinearities, the direct feedback   linearization (DFL)   control strategy was used in the AC all-electrical   tank gun control sys
针对一类含有非线性不确定项的时变时滞不确定参数系统,研究鲁棒保成本弹性滤波器设计问题。非线性不确定项满足范数有界条件,且同时存在于系统模犁和量测输出,系统参数不确定性满足广义匹配条件,并采用加型滤波增益变化来反映滤波器实现过程中的不精确性。将弹性滤波器的设计问题归结为一个线性矩阵不等式组(LMI)问题,通过求解这个LMI问题可以获得滤波器参数。
For the electro-hydraulic servo load system, a robust   adaptive PID controller was proposed. The controller   realized the   asymptotic tracking of the desired output trajectory,   which used the PID
借鉴Jotdan和Elman神经网络的优点,构造一种新型的动态神经网络。将基于遗传算法(GA)和误差反传算法(BP)的混合算法用于神经网络的权值调整。为了提高收敛速度,避免系统陷于局部极小值。将改进的神经网络应用于水下机器人系统建模。仿真结果表明,该网络能对隐含层的历史状态进行记忆,并实现在线调整历史信号对当前值的影响,并且增加了输出层节点的反馈以增强神经网络的信号处理能力。基于混合算法的神经网络