【摘 要】
:
发散场离子推力器挡板通道对放电室性能至关重要,这个区域对进入放电室的原初电子能量、速度分布等影响很大.挡板通道设计的合理性,对离子推力器放电室性能有重要贡献,而通道设计的合理性又依赖于设计者对该区域的等离子体物理过程的充分理解.本文在等离子体基本理论基础上,借鉴已有研究成果,从理论模型、试验验证两方面介绍了发散场离子推力器挡板附近区域的等离子体特性.并获得了挡板附近等离子体物理特性模型和挡板通道设
【机 构】
:
兰州空间技术物理研究所,甘肃兰州,730000;真空低温技术与物理国家重点实验室,甘肃兰州,730000
论文部分内容阅读
发散场离子推力器挡板通道对放电室性能至关重要,这个区域对进入放电室的原初电子能量、速度分布等影响很大.挡板通道设计的合理性,对离子推力器放电室性能有重要贡献,而通道设计的合理性又依赖于设计者对该区域的等离子体物理过程的充分理解.本文在等离子体基本理论基础上,借鉴已有研究成果,从理论模型、试验验证两方面介绍了发散场离子推力器挡板附近区域的等离子体特性.并获得了挡板附近等离子体物理特性模型和挡板通道设计物理模型.研究表明,放电等离子体区和耦合等离子体区之间存在一个电位陡然变化的“薄层”,即双鞘层,它位于挡板附近,该鞘层两边的等离子体电位、电子温度等有明显区别,见图1.而且挡板通道的等离子体电位、电子温度、电流密度与磁场大小和构型以及挡板通道几何尺寸有直接的关系.
其他文献
钛酸铋钠(缩写为NBT)作为典型的高性能环保压电材料,在新一代无铅压电器件中存在潜在重要应用。本文以Bi(NO3)3·5H2O 做为铋源,TiO2 做为钛源,NaOH 做为钠源和矿化剂,采用高温高压水热法通过反应条件的调控成功制备了片状、立方块状、线状等不同形貌的NBT 纳米粉体。通过XRD、FESEM、TEM、SAED 等测试手段对不同条件的纳米粉体进行了结构分析与表征,在此基础上对NBT 纳米
近年来,基于电阻转变效应的电阻随机存取存储器(RRAM)成为了研究热点 [1].多铁性BiFeO3 薄膜也表现出了电阻转变效应 [2],这为其实际应用提供了新的方向.为了研究A 位Ba掺杂对电阻转变效应的影响,采用脉冲激光沉积法(PLD)在导电的SrTi0.99Nb0.01O3(100)单晶衬底上制备了Bi1-xBaxFeO3(x = 0,0.1,0.2)薄膜.X 射线衍射结果表明:薄膜均无明显的
碲化铋是一种具有窄禁带、低导热等特性,且在低温或常温下具有较高优值的热电材料,在热电制冷及余热利用方面有着巨大的应用价值。碲化铋薄膜材料由于其较低的制备成本和便捷的制备工艺,更易实现量产,因此近年来成为热电材料领域的研究热点之一。本文通过磁控溅射的手段分别制备了Bi2Te3 单层和Bi/Te 交叠结构的多层薄膜,并利用热处理工艺调控两种薄膜的表面形貌。发现在氩气气氛保护下,两种薄膜在200℃ -3
电磁超材料吸收器通过合理设计结构尺寸和材料参数可实现 100%的完美吸收,受到学术界的高度关注,在测辐射热仪、电磁隐身、热发射等领域具有巨大的应用潜力.基于超材料的电磁谐振原理,本文设计了一种超宽带太赫兹超材料吸收器.该吸收器的超材料层由厚度约为 100nm的呈 L 型的超材料结构单元周期性排列而成.仿真和实验结果均证实了通过优化设计结构的几何尺寸、晶格周期以及中间介质层的厚度,可实现对垂直入射到
高峰值功率速调管在微波武器系统和高能正负电子对撞机等大科学工程领域具有广阔的应用前景。由于此类速调管的工作电压高研制难度大,目前国际上只有美国、日本和法国等少数发达国家具有研制能力[1,2]。中科院电子所在国家863 计划的支持下,开展了高峰值功率速调管的研制,高峰值功率速调管在微波武器系统和高能正负电子对撞机等大科学工程领域具有广阔的应用前景。由于此类速调管的工作电压高研制难度大,目前国际上只有
欲提高大功率(大于10KW)连续波磁控管的使用寿命和输出功率,需提高磁控管用阴极的耐电子、离子轰击能力和二次电子发射系数(σ).合金阴极因具有良好的耐电子、离子轰击能力,同时具有相对较高的σ,在大功率连续波磁控管中拥有强大的应用潜力.本文通过对不同重量百分比(wt%)掺杂W-Re、W-Sc、W-Y、W-Zr 等合金阴极的σ 进行了研究,发现Re 掺杂W-Re 合金阴极对提高纯钨阴极的σ 能力最明显
采用等离子增强化学气相沉积(PECVD)方法,以Au 为催化剂,在n 型(100)Si 衬底上成功制备了纤锌矿结构的GaN 纳米线。本文摒弃在传统制备方法中会对环境及设备产生腐蚀和污染的氨气(NH3)、三甲基镓(TMG)等氮和镓的前驱体。采用射频(RF)电源电离N2 和H2的混合气体、加热Ga2O3 与炭粉混合粉末的方法,通过调控反应温度、镀金时间、反应时间和射频电源功率等工艺参数在900℃、镀金
在托卡马克等离子体放电过程中,等离子体破裂事件会给装置造成很强的热负载和电磁力负载[1]。实验研究发现[2],如果在破裂发生前迅速的向装置内部一定量的杂质粒子,则可以把等离子体破裂所造成的破坏性降低到很低的程度。弹丸注入和高压气体注入是两种常用的杂质注入方式,它们在应用于等离子体破裂缓解方面都存在着一些缺点。鉴于以上考虑,我们提出了高压气体与锂球弹丸混合同时注入的方式来进行等离子体破裂缓解的新思路
低温等离子体数值仿真的基本过程为物理建模、数值计算和数据分析等。等离子体建模需要考虑磁场、电场、流体力学、传热、质量传输、化学反应等一系列现象,是一个真正的多物理场耦合问题。将低温等离子体看成是一个带电的流体,其状态分别用一些宏观物理量来描述。由于放电产生的等离子体的特征时间远小于所研究的宏观时间,而等离子体的特征尺度远小于放电腔室,等离子体的运动行为,可以采用流体力学模型来描述。低温ECR 等离
为了提高42CrMo 钢的耐磨性和耐蚀性,本文着重研究了42CrMo 钢等离子氮碳共渗与氧化复合处理的工艺和性能。采用D8 ADVANCE 型衍射仪分析表面相组成;MS-T3000 球盘式摩擦磨损试验机进行摩擦磨损试验;采用中性盐雾试验评价耐蚀性能。