【摘 要】
:
As one of the components of dye-sensitized solar cells (DSSCs),the counter electrode (CE) catalyst plays a role in promoting the catalytic reduction of I3-to I-in the electrolyte and collecting electr
【机 构】
:
Functional Materials Laboratory (FML), School of Materials Science and Engineering,Xi'an University
【出 处】
:
第八届新型太阳能材料科学与技术学术研讨会
论文部分内容阅读
As one of the components of dye-sensitized solar cells (DSSCs),the counter electrode (CE) catalyst plays a role in promoting the catalytic reduction of I3-to I-in the electrolyte and collecting electrons from external circuits.Pt is recognized as an optimal CE;however,its limited reserves and high price have restricted industrial production of Pt-based DSSCs.Therefore,developing a Pt-free catalyst is critical to application of DSSCs.Taking into account special layered structure of nickel-iron layered double hydroxide (Ni-Fe LDH),Ni-Fe LDH was used as a precursor and pyrolyzed to controllably synthesize flake-like Ni-Fe bimetallic oxide of NiFe2O4 in this work.The special flake-like structure of NiFe2O4 can expose more effective catalytic active sites,thereby accelerating the process of triiodide reduction reaction.The assembled DSSC with NiFe2O4 CE achieves an outstanding photoelectric conversion efficiency of 6.15%,which is close to that ofPt CE (7.32%) and higher than that ofNi-Fe LDH CE (1.05%).Further,the catalytic mechanism of NiFe2O4 promoting triiodide reduction reaction is deeply explored by density functional theory.The present work highlights a simple and controllable method by pyrolysising LDH to create high-performance electrocatalysts for triiodide reduction reaction and other important electrochemical reactions.
其他文献
CZTSSe太阳能电池的背界面接触质量在制备高性能器件中具有非常重要的作用.Mo背电极与吸收层发生化学反应和背界面的严重复合问题仍然是研究的重点.当在背电极处引入合适厚度的高功函MoO3界面层后,高功函的MoO3抑制吸收层与Mo反应,器件的微观结构发生变化,MoSe2厚度显著降低,吸收层底部孔洞明显减少.同时,吸收层与背电极能带匹配得到优化,形成高质量的背建电场,提高载流子驱动力.最终器件转换效率
Due to the similar electronic structures with Pt,transition metal compounds are widely believed to behave Pt-like catalytic activity and used as counter electrodes catalyst for dye sensitized solar ce
量子点敏化太阳能电池具有工艺技术简单、转换效率高等优点,已成为最具产业化潜力的新型电池[1,2].然而,量子点敏化太阳能电池的电荷传输性能依旧影响光电性能.虽然纳米阵列结构能够提升电荷传输速度,但是其光吸收性能不足,无法获得最佳的电荷产生量[3-5].因此,如何设计优化量子点敏化太阳能电池中的纳米阵列结构,是提升电池光电转换效率的关键因素.本研究工作通过多步阳极氧化法制备锥形竹节状TiO2纳米管阵
Cathode buffer layer interface modification is a commonly used strategy to prepare high-efficient organic solar cells (OSCs).Non-fullerene OSCs based on PM7∶ IT-4F were prepared and modified with PFN-
与台湾交通大学许千树课题组共同开发新型小分子PAS[1].在本研究中,利用UV-vis测试SnO2、PAS和SnO2∶PAS薄膜的紫外-可见吸收光谱和透射光谱(如图1).图1(a)为通过密度泛函理论(DFT)计算的PAS的最优构象以及LUMO和HOMO能级的电子云分布,可以看出在小于300 nm处的特征吸收是由磺酸基到吡啶环的n-π*跃迁引起的.在300-350 nm范围内尾端的吸收是由于极化跃迁
对于有机太阳能电池,在加热条件下或者在太阳光辐射下电池温度升高,导致光活性层形貌发生改变,进而导致有机太阳能电池器件性能的急剧下降.对于提高活性层形貌稳定性的需求,我们采用在活性层引入可交联的共轭有机半导体的方法.基于此,我们使用了一种新型的共轭小分子光引发交联剂(DTODF-4F).这个小分子共轭核心为具有优异的光电性能的芴单元.另外,在芴结构单元接枝可交联的两个环氧基团.环氧基团可以在光引发剂
The OSCs with high PCE and good thickness tolerance are essential for large-scale production.In this work,ternary OSCs are fabricated with PM6∶BTP-4F-12 as host system and IT-M as third component.By f
铜锌锡硫硒(CZTSSe)太阳能电池因其优异的光学性能和低廉的成本而引起广泛关注.然而Mo电极在硒化过程中易生成硒化钼,导致Mo/CZTSSe界面电荷输运性能变差,成为CZTSSe太阳能电池较大电压损失的主要原因之一.本工作基于巯基乙酸-水溶液体系,研究了钼电极制备参数对CZTSSe器件性能的影响.研究发现,溅射压强较低时,所制备Mo电极的方阻较低,反射率较高,但Mo薄膜与钠钙玻璃(SLG)的结合
当下聚合物太阳能电池的光电转换效率已突破18%,接近了商业化要求;然而其相对较差的稳定性仍大大限制了其实际应用。对于传统的富勒烯基聚合物太阳能电池衰减机理及其稳定性提升方法的探究有助于指导其他体系器件稳定性提升策略的工作。课题组前期工作发现在聚合物:富勒烯薄膜光伏电池中,富勒烯的二聚反应是造成器件JSC快速衰减的主要原因,而掺杂哌嗪可以有效抑制PC61BM三重态的产生从而抑制其二聚反应,进而提升器